請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60882
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王惠鈞(Andrew H.-J. Wnag) | |
dc.contributor.author | Tsung-Lin Chou | en |
dc.contributor.author | 周聰麟 | zh_TW |
dc.date.accessioned | 2021-06-16T10:34:36Z | - |
dc.date.available | 2015-08-16 | |
dc.date.copyright | 2013-08-16 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-14 | |
dc.identifier.citation | Brunger, A.T., 1993. Assessment of phase accuracy by cross validation: the free R value. Methods and applications, Acta Crystallogr. D 49, 24–36.
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., Warren, G.L., 1998. Crystallography and NMR system: a new software suite for macromolecular structure determination, Acta Crystallogr. D 54, 905–921. Bode, W., Grams, F., Reinemer, P., Gomis-Ruth, F.X., Baumann, U., McKay, D.B., Stocker, W.,1996 .The metzincinsuperfamily of zinc-peptidases. Adv. Exp. Med. Biol. 389, 1–11. Cirilli, M., Gallina, C., Gavuzzo, E., Giordano, C., Gomis-Ruth, F.X., Gorini, B., Kress, L.F., Mazza F., Paradisi, M.P., Pochetti, G., Politi, V., 1997. 2 A X-ray structure of adamalysin II complexed with a peptide phosphonate inhibitor adopting a retro-binding mode. FEBS Lett. 418, 319-322. Drew, H.R., 1984. Structural specificities of five commonly used DNA nucleases. J. Mol. Biol. 176, 535-557. Francis, B., Kaiser, I.I., 1993. Inhibition of metalloproteinases in Bothrops asper venom by endogenous peptides. Toxicon 31, 889–899. Grams, F., Huber, R., Kress, L. F., Moroder, L., Bode, W., 1993. Activation of snake venom metalloproteinases by a cysteine switch-like mechanism. FEBS Lett. 335, 76–80. Hite, L.A., Shannon, J.D., Bjarnason, J.B., Fox, J.W., 1992. Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for signal, zymogen, and disintegrin-like structures. Biochemistry 31, 6203–6211. Emsley, P., Cowtan, K., 2004. Coot: model-building tools for molecular graphics, Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2126–2132. Fujimoto,M., Kuninaka, A., Yoshino, H., 1974. Studies on a nuclease from Penicillium citrinum: identity of phosphodiesterase and phosphomonoesterase activities with nuclease P1 (a nuclease from Penicillium citrinum), Agric. Biol. Chem. 38, 785–790. Gong, W., Zhu, X., Liu, S., Teng, M., Niu, L., 1998. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus. J. Mol. Biol. 283, 657-668. Gutierrez, J.M., Rucavado, A., 2000. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82, 841–850. Hough, E., Hansen, L.K., Birknes, B., Jynge, K., Hansen S., Hordvik, A., Little, C., Dodson, E., Derewenda, Z., 1989. High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus, Nature 338, 357–360. Huang, K.F., Hung, C.C., Chiou, S.H., 1993. Characterization of three fibrinogenolytic proteases isolated from the venom of Taiwan habu (Trimeresurus mucrosquamatus). Biochem. Mol. Biol. Int. 31, 1041-1050. Huang, K.F., Hung, C.C., Pan, F.M., Chow, L.P., Tsugita, A., Chiou S.H., 1995. Characterization of multiple metalloproteinases with fibrinogenolytic activity from the venom of Taiwan habu (Trimeresurus mucrosquamatus): protein microsequencing coupled with cDNA sequence analysis. Biochem. Biophys. Res. Commun. 216, 223-233. Huang, K.F., Hung, C.C., Wu S.H., Chiou, S.H., 1998. Characterization of three endogenous peptide inhibitors for multiple metalloproteinases with fibrinogenolytic activity from the venom of Taiwan habu (Trimeresurus mucrosquamatus). Biochem. Biophys. Res. Commun. 248, 562–568. Huang, K.F., Chiou, S.H., Ko, T.P., Wang, A. H.-J., 2002a. Determinants of the inhibition of a Taiwan habu venom metalloproteinase by its endogenous inhibitors revealed by X-ray crystallography and synthetic inhibitor analogues. Eur. J. Biochem. 269, 3047-3056. Huang, K.F., Chiou, S.H., Ko, T.P., Yuann, J.M., Wang, A. H.-J., 2002b. The 1.35 A crystal structure of cadmium-substituted TM-3, a snake venom metalloproteinase from Taiwan habu: elucidation of a TNFα converting enzyme-like active site structure with a distorted octahedral geometry of cadmium. Acta Crystallogr. D 58, 1118–1128. Ito, J., Fukuda, H., 2002. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements, Plant Cell 14, 3201–3211. Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119. Kato, H., Iwanaga, S., Suzuki, T., 1966. The isolation and amino acid sequences of new pyroglutamylpeptides from snake venoms. Experientia 22, 49–50. Kini, R.M., 2005. The intriguing world of prothrombin activators from snake venom. Toxicon 45, 1133–1145. Kress, L.F., 1986. Inactivation of human plasma serine proteinase inhibitors (serpins) by limited proteolysis of the reactive site loop with snake venom and bacterial metalloproteinases. J. Cell Biochem. 32, 51–58. Koval', T., Lipovova, P., Podzimek, T., Matoušek, J., Duškova, J., Skalova, T., Stěpankova, A., Hašek, J., Dohnalek, J., 2011. Crystallization of recombinant bifunctional nuclease TBN1 from tomato, Acta Crystallogr. F 67, 124–128. Koval', T., Lipovova, P., Podzimek, T., Matoušek, J., Duškova, J., Skalova, T., Stěpankova, A., Hašek, J., Dohnalek J., 2013. Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction-mechanism analysis, Acta Crystallogr. D 69, 213–226. Ko, C.Y., Lai, Y.L., Liu, W.Y., Lin, C.H., Chen, Y.T., Chen, L.F., Lin, T.Y., Shaw, J.F., 2012. Arabidopsis ENDO2: its catalytic role and requirement of N-glycosylation for function, J. Agric. Food Chem. 60, 5169–5179. Kumasaka, T., Yamamoto, M., Moriyama, H., Tanaka, N., Sato, M., Katsube, Y., Yamakawa, Y., Omori-Satoh, T., Iwanaga, S., Ueki, T., 1996. Crystal structure of H2-proteinase from the venom of Trimeresurus flavoviridis. J. Biochem. 119, 49-57. Laskowski, R.A, MacArthur, M.W, Moss, D.S, Thornton, J.M., 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl .Crystallogr. 26, 283–291. Leonardi, A., Fox, J.W., Trampus-Bakija, A., Krizaj, I., 2007. Ammodytase, a metalloprotease from Vipera ammodytes ammodytes venom, possesses strong fibrinolytic activity. Toxicon 49, 833-842. Liao, R.Z., Yu, J.G., Himo, F., 2010. Phosphate mono- and diesterase activities of the trinuclear zinc enzyme nuclease P1—insights from quantum chemical calculations, Inorg. Chem. 49, 6883–6888. Lingott, T., Schleberger, C., Gutierrez, J.M., Merfort, I., 2009. High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: insight into inhibitor binding. Biochemistry 48, 6166-6174. Lipscomb, W.N., Strater, N., 1996. Recent advances in zinc enzymology. Chem. Rev. 96, 2375-2434. Lou, Z., Hou, J., Liang, X., Chen J., Qiu, P., Liu Y., Li, M., Rao, Z., Yan, G., 2005. Crystal structure of a non-hemorrhagic fibrin(ogen)olytic metalloproteinase complexed with a novel natural tri-peptide inhibitor from venom of Agkistrodon acutus. J. Struct. Biol. 152, 195-203. Markland, F.S. Jr., Swenson, S., 2013. Snake venom metalloproteinases. Toxicon 62, 3-18. McRee, D.E., 1999. XtalView/Xfit – a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165. Mittler, R., Lam, E., 1995. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death, Plant Cell 7, 1951–1962. Moura-Da-Silva, A.M., Butera, D., Tanjoni, I., 2007. Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells. Curr. Pharm. Des. 13, 2893–2905. Munekiyo, S.M., Mackessy, S.P., 2005. Presence of peptide inhibitors in rattlesnake venoms and their effects on endogenous metalloproteases. Toxicon 45, 255-263. Odell, G.V., Ferry, P.C., Vick, L.M., Fenton, A.W., Decker, L.S., Cowell, R.L., Ownby, C.L., Gutierrez, J.M., 1998. Citrate inhibition of snake venom proteases. Toxicon 36, 1801–1806. Oleykowski, C.A., Mullins, C.R.B., Godwin, A.K., Yeung, A.T., 1998. Mutation detection using a novel plant endonuclease, Nucleic Acids Res. 26, 4597–4602. Otwinowski, Z., Minor, W., 1997. Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol. 276, 307–326. Perez-Amador, M.A., Abler, M.L., De Rocher, E.J., Thompson, D.M., van Hoof, A., LeBrasseur N.D., Lers, A., Green, P.J., 2000. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis, Plant Physiol. 122, 169–179. Romier, C., Dominguez, R., Lahm, A., Dahl, O., Suck, D., 1998. Recognition of single-stranded DNA by nuclease P1: high resolution crystal structures of complexes with substrate analogs. Proteins 32, 414–424. Retzios, A.D., Markland, F.S. Jr., 1988. A direct-acting fibrinolytic enzyme from the venom of Agkistrodon contortrix contortrix: effects on various components of the human blood coagulation and fibrinolysis systems. Thromb. Res. 52, 541–552. Shishido, K., Ando T., 1985. Single-strand-specific nucleases. In: Nucleases (Linn S.M. and Roberts, R.J., Eds.), pp. 155-185. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Siigur, E., Aaspollu A., Trummal, K., Tonismagi, K., Tammiste, I., Kalkkinen, N., Siigur, J., 2004. Factor X activator from Vipera lebetina venom is synthesized from different genes. Biochim. Biophys. Acta 1702, 41–51. Stocker, W, Grams, F, Baumann, U, Reinemer, P, Gomis-Ruth, F.X, McKay, D.B, Bode, W., 1995. The metzincins-Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823-840. Sugiyama, M., Ito, J., Aoyagi, S., Fukuda, H., 2000. Endonucleases. Plant Mol. Biol. 44, 387–397. Till, B.J., Burtner, C., Comai, L., Henikoff, S., 2004. Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32, 2632–2641. Triques, K., Sturbois, B., Gallais, S., Dalmais, M., Chauvin, S., Clepet, C., Aubourg, S., Rameau, C., Caboche, M., Bendahmane, A., 2007. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J. 51, 1116–1125. Trummal, K., Tonismagi, K., Siigur, E., Aaspollu, A., Lopp, A., Sillat, T., Saat, R., Kasak, L., Tammiste, I., Kogerman, P., Kalkkinen, N., Siigur, J., 2005. A novel metalloprotease from Vipera lebetina venom induces human endothelial cell apoptosis. Toxicon 46, 46-61. Vallee, B.L., Auld, D.S., 1993. New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry 32, 6493–6500. Volbeda, A., Lahm, A., Sakiyama, F., Suck, D., 1991. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. EMBO J. 10, 1607–1618. Wang, C.C., Chen, J.R., Tseng, Y.C., Hsu, C.H., Hung, Y.F., Chen, S.W., Chen, C.M., Khoo, K.H., Cheng, T.J., Cheng, Y.S., Jan, J.T., Wu, C.Y., Ma, C., Wong, C.H., 2009. Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc. Nat. Acad. Sci. 106, 18137–18142. Zhang, D., Botos I., Gomis-Ruth, F.X., Doll, R., Blood, C., Njoroge, F.G., Fox, J.W., Bode, W., Meyer, E.F., 1994. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d). Proc. Natl . Acad. Sci. 91, 8447-8451. Zhou, Q., Dangelmaier, C., Smith, J.B., 1996. The hemorrhagin catrocollastatin inhibits collagen-induced platelet aggregation by binding to collagen via its disintegrin-like domain. Biochem. Biophys. Res. Commun. 219, 720–726. Zhu, X., Teng, M., Niu, L., 1999. Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases. Acta Crystallogr. D 55, 1834-1841. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60882 | - |
dc.description.abstract | 本論文第一部份經由Arabidopsis thaliana bi-functional nuclease (AtBFN2)結晶結構探討此蛋白質催化水解單股DNA與RNA的機制,由結構解析了解參與基質催化反應的殘基。阿拉伯芥基因At1g68290可轉譯成雙功能核酸酶AtBFN2 (EC 3.1.30.1),藉由鋅離子參與催化反應對單股DNA與RNA進行切割反應產生5’ 核苷酸最終產物。AtBFN2 為一醣蛋白,先前文獻研究證明此蛋白質參與植物的分化與發育。在本論文中,我們將C端帶有組胺酸標籤 (his-tag) 的雙功能核苷酸酶之融合蛋白質轉殖於阿拉伯芥中大量表現並純化並成功解析AtBFN2結構,解析度為1.76 A。AtBFN2晶體內一硫酸根離子與催化中心鋅離子藉由氫鍵交互作用。AtBFN2結構由13個α-螺旋、五個短β-平板與4個雙硫鍵組成的蛋白質分子。我們發現催化中心鋅離子與AtBFN2 會與分子內5個組氨酸與3個天門冬氨酸的側鏈、2個來自色氨酸骨架上的原子、以及環境中水分子與硫酸根離子有交互作用。 AtBFN2 分子Asn91、Asn110、Asn184位置被後轉譯修飾作用結合約22個糖分子的醣蛋白。我們進一步將AtBFN2-sulfate-adenine 複合體與已發表P1核酸酶 (P1 nuclease;PDB ID : 1AKO) 的結構比較,發現兩者催化方式皆利用被鋅離子活化的水分子對磷分子做in-line attack方式水解單股DNA與RNA。
本論文第二部分利用結構解析研究台灣龜殼花毒液金屬蛋白酶(snake-venom metalloproteinase) TM-1與內生性三肽間抑制作用。TM-1 屬於P-I 族群金屬蛋白酶,利用結晶學與結構生物學,我們獲得解析度為1.8 A的TM-1 3D結構。TM-1與已知的SVMP特性相似,皆利用三個雙硫鍵穩定其結構,分別位於 Cys119-Cys198、Cys160-Cys182、Cys162-Cys165。其結構活性區為一Zinc ion 被三個histidine 與水分子包圍形成tetrahedral 構形。 我們進一步分析TM-1與另一種同為台灣龜殼花分離出的蛇毒TM-3 的S1’活性區,發現基質特異性與S1’底部的胺基酸殘基變異有關。同時利用水解胰島素B鍊研究S1’活性區對基質切位,發現TM-1 對中型與疏水性殘基有較高的水解能力。 | zh_TW |
dc.description.abstract | The dissertation is divided into two parts. The first topic is to discuss the structure of Arabidopsis thaliana AtBFN2, a gene participates in development differentiation. The A. thaliana gene At1g68290 was expressed as a C-terminal hexahistidine fusion protein AtBFN2 (EC 3.1.30.1). The bi-functional nuclease AtBFN2 from A. thaliana depends on zinc ion for cleaving single stranded DNA and RNA to yield 5'-nucleotides. It is a glycoprotein that participates in plant development and differentiation. In this study, the crystal structure of AtBFN2 shows a bound sulfate ion in the active site, at the center of the tri-nuclear cluster of zinc ions. The protein folds into a mostly α-helical structure with five short β-strands and contains four disulfide bonds. The zinc ions are coordinated to the side chains of three Asp and five His residues, two backbone atoms of Trp1, the sulfate ion, and a water molecule. An adenine base is bound adjacent to the active site and stacks with Tyr59. The core sugar residues attached to the three N-glycosylation sites of Asn91, Asn110 and Asn184 are also observed. By comparison with the nuclease P1 structure (PDB ID: 1AK0), the AtBFN2-sulfate-adenine complex model suggests a similar catalytic mechanism, in which the reaction starts with in-line attack at the phosphate by a zinc-activated water molecule.
The other topic of this dissertation is to study snake-venom metalloproteinase (SVMP). The crystal structure of TM-1, a P-I class snake-venom metalloproteinase (SVMP) from the Trimeresurus mucrosquamatus venom, was determined at 1.8-A resolution. The overall structure of TM-1 is an oblate ellipsoid that contains three disulfide crosslinks, Cys119-Cys198、Cys160-Cys182、Cys162-Cys165. At active site, one zinc ion is bound to four ligands, including three conserved histidines and one water, displaying a tetrahedral geometry. The active site shows a deep S1’ substrate-binding pocket limited by the non-conserved Pro174 at the bottom. Further comparisons with other SVMPs suggest that the deep S1’ site of TM-1 correlates with its high inhibition sensitivity to the endogenous tripeptide inhibitors. Proteolytic specificity analysis revealed that TM-1 prefers substrates having a moderate-size and hydrophobic residue at the P1’ position, consistent with our structural observation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:34:36Z (GMT). No. of bitstreams: 1 ntu-102-D93b46004-1.pdf: 13020012 bytes, checksum: 80075f38bbfa9678e769f055c34a88a8 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | Abstract (in Chinese)………………………………………………………………….V
Abstract……………………………………………………………………………...VII Part A: Structural studies of AtBFN2, a nuclease from Arabidopsis thaliana and its catalytic mechanism 1. Introduction……………………………………..………………….………….......1 2. Materials and methods…………………………………………….………………5 2.1 Transgenic plant growth conditions……………………………………………….5 2.2 Purification of recombinant AtBFN2 from transgenic Arabidopsis thaliana……5 2.3 Crystallization, data collection, and structure determination ……………………..6 3. Results……………………………………………………………………………...8 3.1. Overall structure of AtBFN2……………………………………………………...8 3.2. Active-site configuration………………………………………………………….9 3.3. Carbohydrate structure…………………………………………………………..10 4. Discussion…………………………………………………………………………12 5. Tables and figures………………………………………………………………..18 Fig. 1 Phylogenetic tree of single‐strand-specific nucleases…………………….......18 Fig. 2 Diagram of PcNP1 hydrolyzes DNA, RNA and 3'-monophosphonucleotides..19 Fig. 3 Purification flow chart of AtBFN2……………………………………………20 Fig. 4 Purification of AtBFN2 from transgenic plants……………………………….21 Fig. 5 The AtBFN2 protein crystals formed in different screening conditions….......22 Fig. 6 Diagram of thiophosphorylated nucleotides…………………………………23 Fig. 7 AtBFN2 crystals were improved by adding thiophosphorylated nucleotide….24 Fig. 8 Overall structure of AtBFN2………………………………………………….25 Fig. 9 Structure comparison of AtBFN2 with PcNP1 and BcPLC……………..........26 Fig. 10 The amino-acid sequence aligment of AtBFN2, BcPLC and PcNP1………27 Fig. 11 The active-site structure of AtBFN2……………………………………….28 Fig. 12 The Stereo view of AtBFN2 active site…………………………………….29 Fig. 13 The electron density maps of ligands and sugars of AtBFN2……………….30 Fig. 14 The stereo view of carbohydrate interactions………………………………..31 Fig. 15 Alignment of plant S1/P1-type nucleases.………………………………...32 Fig. 16 Comparison of the active-site bound ligands in AtBFN2 and PcNP1……….33 Fig. 17 The carbohydrate coordinate residues of AtBFN2..........................................34 Fig. 18 Substrate model in the active site of AtBFN2 (a)……………………………35 Fig. 19 Substrate model in the active site of AtBFN2 (b)……………………………36 Fig. 20 Proposed catalytic mechanism of AtBFN2…………………………….......37 Fig. 21 Bonds involved in catalysis………………………………………………….38 Fig. 22 Comparison of the active-site structures of AtBFN2 and SlTBN1………….39 Table 1 Data collection and refinement statistics.………………………………...40 Part B: Structural basis for distinct susceptibilities of snake venom metalloproteinases to the endogenous tripeptide inhibitors 1. Introduction……………………………………..………………………………....41 2. Materials and methods……………………………………………………….......45 2.1 Crystallization……………………………………………………………............45 2.2 Structure determination and refinement………………………………………….46 2.3 Protein N-terminal sequence analysis……………………………………………47 2.4 Proteolytic specificity…………………………………………………………….47 3. Results and discussion……………………………………………………………48 3.1 Crystallographic sequence and overall structure…………………………………48 3.2 The active-site environment……………………………………………………...50 3.3 Implication for sensitivity to the endogenous peptide inhibitors…………...........52 3.4 Proteolytic specificity…………………………………………………………….53 4. Conclusion………………………………………………………………………...54 5. Tables and figures………………………………………………………………55 Fig. 1 Crystal of TM-1 from T .mucrosquamatus used for data collection…………55 Fig. 2 Amino-acid sequence and crystal structure of TM-1………………………….56 Fig. 3 The final refined structure of TM-1 overlaid with the experimental electron-density map…………………………………………………………………57 Fig. 4 Multiple sequence alignment of TM-1 with other twenty-one SVMPs……….58 Fig. 5 A ribbon diagram in stereo view of the overall structure of TM-1……………60 Fig. 6 Superimposition of TM-1 structure with the structures of other eight P-I SVMPs…………………………………………………………………………….61 Fig. 7 The zinc-binding environment of TM-1 structure………………………….62 Fig. 8 Catalytic mechanism of metalloproteinase…………………………………....63 Fig. 9 Substrate specificity of TM-1………………………………………………....64 Fig. 10 Metal ions bound to the surface of TM-1……………………………………65 Fig. 11 Comparison of the active-site structures of TM-1 and TM-3………………66 Table 1 Comparison of cleavage specificities of various snake-venom matalloproteinases with oxidized insulin B-chain as substrate……………………67 Table 2 Data collection and refinement statistics……………………………………68 Table 3 Inhibition constants for the synthetic analogues of peptide inhibitors……...69 References……………………………………………………………………….......70 Appendix……………………………………………………………….....................76 | |
dc.language.iso | en | |
dc.title | A.阿拉伯芥雙功能核酸酶結構解析及催化機制
B.台灣龜殼花毒液金屬蛋白酶之結構解析與內生三肽抑制劑之抑制作用 | zh_TW |
dc.title | A. Structural studies of AtBFN2, a nuclease from Arabidopsis thaliana and its catalytic mechanism
B. Structural basis for distinct susceptibilities of snake venom metalloproteinases to the endogenous tripeptide inhibitors | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),蕭介夫(Jei-Fu Shaw),余榮熾(Lung-Chih Yu),李冠群(Guan-Chiun Lee) | |
dc.subject.keyword | X-射線繞射,結晶結構,醣蛋白,磷酸酯解酶,蛇毒金屬蛋白酶,三肽,抑制劑,S’1基質結合袋, | zh_TW |
dc.subject.keyword | X-ray diffraction,crystal structure,glycoprotein,phosphodiesterase,tri-nuclear metal enzyme,snake-venom metalloproteinase,Trimeresurus mucrosquamatus,tripeptide inhibitor,S1’ substrate-binding pocket, | en |
dc.relation.page | 99 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-14 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 12.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。