Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊永斌(Yeong-Bin Yang)
dc.contributor.authorXiang-Yu Chenen
dc.contributor.author陳翔宇zh_TW
dc.date.accessioned2021-06-16T10:34:24Z-
dc.date.available2013-08-17
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citationBettess, P. (1977), “Diffraction and refraction of surface waves using finite and infinite element,” International Journal for Numerical Methods in Engineering, Vol. 11, 1271-1290.
Chester, M.(1963), “Second sound in solid,” Physical Review, Vol. 131, 2103-2016.
Deaconu, V. (2007), “Finite Element Modelling of Residual Stress – A Powerful Tool in the Aid of Structural Integrity Assessment of Welded Structures, ” 5th Int Conference Structural Integrity of Welded Structures (ISCS2007), 1-9.
D. W. ,Tang and N. Araki(1996), “Analytical solution of non-Fourier temperature response in a finite medium under laser-pulse heating,” Heat and Mass Transfer Vol. 31, 359-363
Francis H. P.(1972), “Thermo-mechanical effects in elastic wave propagation: A survey,” Journal of Sound and Vibration, Vol. 21, 181-192.
Goldak, J. A. , Chakravarti, A. , and Bibby, M. (1984), “A New Finite Element Model for Welding Heat Sources,” Metallurgical Trans B, Vol. 15(B): 299-305.
Grazyna, Kaluza and Ewa, Ladyga(2011), “Application of BEM for numerical solution of thermal wave model of bioheat transfer,” Scientific Research of the Institute of Mathematics and Computer Science, Vol.1(10), 83-91
Hung, H. H. , and Yang, Y. B. (2001), “Elastic waves in visco-elastic half-space generated by various vehicle loads,” Soil Dynamics and Earthquake Engineering,Vol. 21(1), 1–17.
Jae-Yuh, Lin(1998), “The non-Fourier effect on the fin performance under periodic thermal conditions,” Applied Mathematical Modelling Vol.22, 629-640
J.P. Holman, Heat transfer, 10th ed. (Boston: McGraw Hill, 2010)
Landau L.(1941), “The theory of superfluidity of helium,” Journal of Physics Vol.5, 71.
Lindgren L. E. , (2001), “Finite Element Modeling and Simulation of Welding. Part 1,” Journal of Thermal Stresses, Vol. 24, 141-192.
Maurer, M. J. , (1969). “Relaxation model for heat conduction in metals,” Journal of Applied Physics, Vol. 40(13): 5123-5130.
Maxwell Jame Clerk (1867), “ On the dynamical theory of gases,” The Philosophical Transactions of the Royal Society Vol.157, 49.
Nettleton R. E.(1960), “Relaxation theory of thermal conduction in liquids,” Physics of Fluids, Vol. 3, 216-225.
Ning, Yu, and Inoue, T. (2004), “Characteristics of Temperature Field due to Pulsed Heat Input Calculated by Non-Fourier Heat Conduction Hypothesis,” JSME International Journal. Series A, Vol. 47(4): 574-580
Ning, Yu , and Inoue, T. (2006), “Hypothesis Thermoelastic Analysis due to Pulsed Input by Numerical Simulation,” JSME International Journal. Series A, Vol. 49(2): 180-187
Onsager, Lars (1931), “Reciprocal relations in irreversible processes,” Physical Review Vol.37, 405.
Paul, W. Partridge and Luiz, C. Wrobel(1990), “The dual reciprocity boundary element method for spontaneous ignition.” International Journal for Numerical Method In Engineering, Vol. 30, 956-963.
Salazar ,Agustin(2006), “Energy propagation of thermal waves,” European Journal of Physics, Vol. 27, 1349-1355.
Seyfolah, Saedodin and Mohsen, Torabi(2010), “Algebraically explicit analytical solution of three-dimensional hyperbolic heat conduction,” Advances in Theoretical and Applied Mechanics, Vol. 3(8) , 369-383
Tzou, D. Y.(1992), “On the wave theory in heat conduction,” ASME J. Heat Transfer , Vol.116, 526-535.
Wang Bao Lin and Han Jie Cai(2010), “A finite element method for non-Fourier heat conduction in strong thermal shock environments,” Frontiers of Materials Science in China , Vol.4(3), 226-233.
Wen Qiang Lu, Jing Liu and Yun tao Zeng(1998), “Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method,” Engineering Analysis with Boundary Element Vol.22167-174.
Yang, Y. B., and Hung, H. H. (2001). “A 2.5D finite/infinite element approach for modeling visco-elastic bodies subjected to moving loads,” International Journal for Numerical Methods in Engineering, Vol. 51(11), 1317–1336.
Yang, Y. B. , Hung, H. H. , and Chang, D. W. (2003). “Train-induced wave propagation in layered soils using finite/infinite element simulation,” Soil Dynamics and Earthquake Engineering, Vol. 23(4), 263–278.
Yang Y. B. , Shyh Rong Kuo and Hsiao Hui Hung(1996), “Frequency independent infinite elements for analyzing semi-infinite problems,” International Journal for Numerical Methods in Engineering, Vol. 39, 3553-3569.
Zhao, C. and Valliappan, S. (1993), “Mapped transient infinite elements for heat transfer problems in infinite media,” Computer Methods in Applied Mechanics and Engineering, Vol. 180, 119-131.
張宏毅(2011),“2.5維非傅利葉熱傳法則固體熱傳模擬”,國立台灣大學土木工程研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60878-
dc.description.abstract在分析實際工程問題時,所使用的熱傳公式多是基於傅立業熱傳定律,對於常規的熱傳過程,能夠取得不錯的結果。然而,當涉及到一些非常規的熱傳環境,比如極高(低)溫、溫度急劇變化,傳統的熱傳定律將不再適用。因為在傅立業熱傳定律中,熱的傳播速度為無限大,這與物理規律不符。所以學者提出了非傅立業熱傳定律,以期達到更準確的模擬。
本文首先介紹了非傅立業熱傳的一些基本特性。然後通過分離變量法和傅立業轉換,對非傅立業熱傳的控制方程式推導解析解,由此發現其不同於傳統熱傳的一些特性。隨後利用有限元素法模擬其數值解,提出波動無限元素的假設。針對移動熱載重的問題,借鑒了Yang和Hung(2001)在處理行駛的列車對土壤振動的影響時所用的2.5D方法。推導了2.5D有限元素法的控制方程,並和解析解作對比。最後總結了本文的不足之處和未來展望。
zh_TW
dc.description.abstractThe classical Fourier model has often been adopted to analyze the heat conduction problem encountered in various engineering situations, which is quite satisfactory for the majority of problems considered. However, it fails to adequately predict the temperature variations in situations with drastic changes in temperature,, extreme temperature gradients, or with temperatures near absolute zero. Because Fourier’s law implies that the propagation speed of thermal disturbances is infinite, which is a paradox from the physical point of view. Therefore, it was suggested that the conventional Fourier heat equation should be replaced with a non-Fourier heat equation to account for the finite speed of thermal propagation.
Some characteristics of the non-Fourier heat conduction is presented in this paper. The analytical solution of the governing equation based on the non-Fourier law is solved by separation of variables and Fourier transform. Comparison of the results obtained by the classical Fourier theory and non-Fourier heat conduction law is carried out, and some discussions are made. Particularly, the dynamic infinite element is employed, along with the finite elements, to get the numerical solution. With the 2.5D finite element method proposed by Yang and Hung (2001), the temperature distribution in a semi-infinite field induced by a moving heat load is studied, and compared with the analytical one. The areas for further improvement or future research are outlined.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:34:24Z (GMT). No. of bitstreams: 1
ntu-102-R00521252-1.pdf: 2329903 bytes, checksum: 06af6e363dfbeea25a7047777a65454a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
致謝………………………………………………………………………………. III
摘要………………………………………………………………………………. VI
Abstract…..….…….……………………………………………………………… VII
目錄………………………………………………………………………………. IX
圖目錄……………………………………………………………………………. XII
第一章 導論…………………………………………………………………... 1
1.1研究目的與動機……………………………………………………….. 1
1.2論文架構……………………………………………………………….. 1
第二章 非傅立葉熱傳基本理論……………………………………………... 3
2. 1非傅立葉熱傳介紹…………………………………………………….. 3
2.2單向延遲雙曲線熱傳模型…………………………………………….. 5
2.3文獻回顧……………………………………………………………….. 9
第三章 非傅立葉熱傳之解析解………………………………………….….. 11
3.1前言………………………………………………………………….…. 11
3.2邊界條件…………………………………………………………….…. 12
3.3無因次表示…..……………………………………………………….... 14
3.3.1傅立葉熱傳無因次表示…………………………………………. 15
3.3.2非傅立葉熱傳無因次表示……………………………………..... 16
3.4一維非傅立葉熱傳之解析解………………………………………….. 17
3.5二維與三維非傅立業熱傳之解析解………………………………….. 19
3.5.1二維熱傳例題………….……………………………………........ 21
第四章 非傅立葉熱傳之有限元素法..………………………………………. 27
4.1導論…………………………………………………………………….. 27
4.2有限元素法…………………………………………………………….. 28
4.2.1時間域有限元素法………………………………………………. 33
4.2.2頻率域有限元素法………………………………………………. 35
4.2.3例題說明…………………………………………………………. 36
4.3靜態無限元素………………………………………………………….. 38
4.4動態無限元素………………………………………………………….. 42
4.5小結…………………………………………………………………….. 47
第五章 2.5D有限元素法………………………………………………………. 48
5.1導論…………………………………………………………………….. 48
5.2移動熱荷載與半無限導體之解析解………………………………….. 48
5.3 2.5D有限與無限元素分析法…………………………………………. 58
5.4 結論…………………………………………………………………….. 64
第六章 結論與未來展望………………………………………………….…... 65
6.1結論……………………………………………………………………... 65
6.2未來展望………………………………………………………………... 66
參考文獻..…………………………………………………………………..…… 68
簡歷..……………………………………………………………………………. 79
dc.language.isozh-TW
dc.title2.5D有限元素非傅立葉熱傳法則模擬zh_TW
dc.titleA 2.5D finite element approach for modeling non-Fourier heat conduction subjected to moving heat sourcesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂良正(Liang-Jeng Leu),郭世榮(S. R. Kuo),陳東陽(Tungyang Chen)
dc.subject.keyword傅立業熱傳,非傅立業熱傳,無限元素,2.5D有限元素法,zh_TW
dc.subject.keywordFourier heat conduction,non-Fourier heat conduction,infinite element,2.5D method,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2013-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved