請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60869完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生(Guey-Sheng Liou) | |
| dc.contributor.author | Jhe-Huang Lin | en |
| dc.contributor.author | 林哲煌 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:33:58Z | - |
| dc.date.available | 2018-08-27 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | [1] Overberger, C.; Moore J. A. Adv Polymer Sci. 1970, 7, 113.
[2] Marvel, C. S. Polym. Rev. 1975, 13, 219. [3] Jaffe, M.; Chen, P.; Choe, E. W.; Chung, T. S.; Makhija, S. Adv Polymer Sci. 1994, 117, 297. [4] Hergenrother, P. M.; Encyclopedia of Polymer Science and Engineering, Wiley: New York, 1987, 7, 639. [5] Hergenrother, P. M. High Perform. Polym. 2003, 15, 3. [6] Frazer, H. High Temperature Resistant Polymers, New York, Ch 4, 1968. [7] Cassidy P. E. Thermally Stable Polymers, New York, 1980. [8] Fink J. K. High Performance Polymers, Norwich, Ch 13, 2008. [9] Kotek, R. Polym. Rev. 2008, 48, 221. [10] Hill, R.; Walker, E. E. J. Polym. Sci. 1948, 3, 609. [11] Morgan P. W. Condensation Polymers by Interfacial and Solution Methods, Wiley: New York, 1965. [12] Penn, L.; Newey, H. A.; Chiao T. T. J. Mat. Sci. 1976, 11, 190. [13] Kwolek, S. L.; Morgan, P. W.; Schaefgen, J. R.; Gulrich, L. W. Macromolecules 1977, 10, 1390. [14] Morgan, P. W. Macromolecules 1977, 10, 1381. [15] Ogata, N.; Tanaka, H. Polym. J. 1971, 2, 672. [16] Ogata, N.; Suzuki, G. Macromolecular Syntheses, New York: JohnWiley & Sons, 1974. [17] Yamazaki, N.; Higashi, F. Tetrahedron Letters 1972, 49, 5047. [18] Yamazaki, N.; Higashi, F. Tetrahedron Letter 1974, 30, 1323. [19] Higashi, F.; Goto, M.; Nakano, Y.; Kakinoki, H. J. Polym. Sci., Polym. Chem. Ed. 1980, 18, 851. [20] Higashi, F.; Ogata, S.; Aoki, Y. J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 2081. [21] Higashi, F.; Akiyama, N.; Ogata, S. J. Polym. Sci., Polym. Chem. Ed. 1983, 21, 913. [22] Preston, J.; Krigbaum, W. R.; Kotek, R. J. Polym. Sci. Polym. Chem. Ed. 1982, 20, 3241. [23] Kotek, R.; Krigbaum, W. R.; Preston, J. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 2387. [24] Krigbaum, W. R.; Kotek, R.; Preston, J. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 873. [25] Krigbaum, W. R.; Kotek, R.; Mihara, Y.; Preston, J. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 4045. [26] Krigbaum, W. R.; Kotek, R.; Mihara, Y.; Preston, J. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 1907. [27] Mehdipour-Ataei, S.; Bahri-Laleh, N. Iran. Polym. J. 2008, 17, 95. [28] Takekoshi, T. Polyimides-Fundamentals and Applications, Marcel Dekker, New York, Ch 2, 1996. [29] Sroog, C.E. J. Polym. Sci. Macromol. Rev. 1976, 11, 161. [30] Sek, D.; Pijet, P.; Wanic, A; Schab-Balkerzak, E.; J. Polym. Sci. A Polym. Chem. 1995, 33, 547. [31] Sek, D.; Pijet, P.; Wanic, A. Polymer 1992, 33, 90. [32] Manami, H.; Nakazawa, M.; Oishi, Y.; Kakimoto, M.; Imai, Y. J. Polym. Sci. Part A: Polym. Chem. 1990, 28, 465. [33] Avella, N.; Maglio, G.; Palumbo, R.; Russo, F.; Vignola, M. C. Macromol. Chem. Rapid Commum. 1993, 14, 545. [34] Hsiao, S. H.; Yang, C. P.; Fan, J. C. Macromol. Chem. Phys. 1995, 196, 3041. [35] Maglio, G.; Palumbo, R.; Vignola, M. C. Macromol. Chem. Phys. 1995, 196, 2775. [36] Hsiao, S. H.; Yu, C. H. J. Polym. Res. 1996, 3, 247. [37] Hsiao, S. H.; Chang, H. Y. J. Polym. Sci. Part A: Polym. Chem. 1996, 34, 1421. [38] Hsiao, S. H.; Chang, C. F. J. Polym. Sci. Part A: Polym. Chem. 1996, 34, 1433. [39] Hsiao, S. H.; Huang, P. C. Macromol. Chem. Phys. 1997, 198, 4001. [40] Hsiao, S. H.; Huang, P. C. J. Polym. Sci. Part A: Polym. Chem. 1997, 35, 2421. [41] Critchley, J. P.; White, M. A. J. Polym. Sci. Polym. Chem. Part A 1972, 10, 1809. [42] Bell, V. L.; Stump, B. L.; Gager, H. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 2275. [43] Feld, W. A.; Ramalingam, B.; Harris, F. W. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 319. [44] Ghatge, N. D.; Shinde, B. M.; Mulik, U. P. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 3359. [45] Hsiao, S. H.; Yang, C. P.; Fan, J. C. J. Polym. Res. 1994, 1, 345. [46] Hsiao, S. H.; Yang, C. P.; Lin, C. K. J. Polym. Res. 1995, 2, 1. [47] Tamai, S.; Yamaguchi, A.; Ohta, M. Polymer 1996, 37, 3683. [48] Hsiao, S. H.; Huang, P. C. J. Polym. Res. 1997, 4, 183. [49] Liaw, D. J.; Hsu, P. N.; Chen, W. H.; Lin, S. L. Macromolecules 2002, 35, 4669. [50] Chang, W. C.; Liou, G. S.; Hsiaob, S. H. J. Mater. Chem. 2007, 17, 1007. [51] Chang, C. W.; Liou, G. S. J. Mater. Chem.2008, 18, 5638. [52] Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307. [53] Chang, C. W.; Yen, H. J.; Huang, K. Y.; Yen, J. M.; Liou, G. S. J. Polym. Sci. A Polym. Chem. 2008, 46, 7937. [54] Paul, M. S.; Roger, J.; David, R.; Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochrornisrn: Fundamentals and Applications New York, Ch1, 1995. [55] Platt, J. R. J. Chem. Phys. 1961, 34, 862. [56] Deb, S. K. Appl. Optics, suppl. 1969, 3, 192. [57] Gottesfeld, S.; McIntyre, J.D.E.; Beni, G.; Shay, J.L. Appl. Phys. Lett. 1978, 33, 208. [58] Gottesfeld, S.; McIntyre, J. D. E. J. Electrochem. Soc. 1979, 126, 742. [59] Beni, G.; Rice, C. E.; Shay, J. L. J. Electrochem. Soc. 1980, 127, 1342. [60] Kang, K. S.; Shay, J. L. J. Electrochem. Soc. 1983, 30, 766. [61] Beni, G.; Shay, J. L. Appl. Phys. Lett. 1978, 33, 567. [62] Mortimer, R. J. Chem. Soc. Rev. 1997, 26, 147. [63] Neff, V. D. J. Electrochem. Soc. 1978, 125, 886. [64] Nicholson, M. M.; Pizzarello, F. A. J. Electrochem. Soc. 1979, 126 ,1490 [65] Nicholson, M. M.; Pizzarello, F. A. J. Electrochem. Soc, 1981, 128, 1740. [66] Chang, A. T.; Marchon, J. C. Inorg. Chim. Acta. 1981, 53, L241. [67] Feast, W. J.; Tsibouklis, J.; Pouwer, K. L.; Groenendaal, L.; Meijer, E. W. Polymer 1996, 37, 5017. [68] Argun, A. A.; Aubert, P. H.; Thompson, B. C. Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Chem. Mater. 2004, 16, 4401. [69] Bange, K.; Bambke, T. Adv. Mater. 1990, 2, 10. [70] Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. Chem. Mater. 1998, 10, 2101. [71] Kumar, A.; Welsh, D. M.; Morvant, M. C.; Piroux, F.; Abboud, K. A.; Reynolds, J. R. Chem. Mater. 1998, 10, 896. [72] Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Wudl, F. Adv. Mater. 2004, 16, 1905. [73] Sonmez, G.; Shen, C. K. F.; Rubin, Y.; Wudl, F. Adv. Mater. 2005, 17, 897. [74] Sonmez, G.; Schwendeman, I.; Schottland, P.; Zong, K.; Reynolds, J. R. Macromolecules 2003, 36, 639. [75] Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers, Marcel Dekker, New York, 2nd ed, 1998. [76] Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers, John Wiley and Sons, New York, 1997. [77] Oishi, Y.; Ishida, M.; Kakimoto, M. A.; Imai, Y.; Kurosaki, T. J. Polym. Sci. A Polym. Chem. 1992, 30, 1027. [78] Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci. A Polym. Chem. 2002, 40, 3815. [79] (a) Su, T. H.; Hsiao, S. H.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 2085. (b) Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307. [80] (a) Yen, H. J.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 1584. (b) Huang, L. T.; Yen, H. J.; Chang, C. W.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4747. [81] (a) Liou, G. S.; Hsiao, S. H.; Chen, W. C.; Yen, H. J. Macromolecules 2006, 39, 6036. (b) Chang, C. W.; Liou, G. S.; Hsiao, S. H. J. Mater. Chem. 2007, 17, 1007. [82] (a) Liou, G. S.; Hsiao, S. H.; Chen, H. W. J. Mater. Chem. 2006, 16, 1831. (b) Liou, G. S.; Chang, C. W.; Huang, H. M.; Hsiao, S. H. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2004. (c) Chang, C. W.; Yen, H. J.; Huang, K. Y.; Yeh, J. M.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7937. (d) Yen, H. J.; Liou, G. S. Chem. Mater. 2009, 21, 4062. [83] Yen, H. J.; Lin, K. Y.; Liou, G. S. J. Mater. Chem. 2011, 21, 6230. [84] Rauh, R. D. Electrochim. Acta 1999, 44, 3165. [85] Franke, E. B.; Trimble, C. L.; Hale, J. S.; Schubert, M.; Woollam, J. A. J. Appl. Phys. 2000, 88, 5777. [86] Topart, P.; Hourquebie, P. Thin Solid Films 1999, 352, 243. [87] Dyer, A. L.; Grenier, C. R. G.; Reynolds, J. R. Adv. Funct. Mater. 2007, 17, 1480. [88] Ward, M. D. J. Solid State Electrochem. 2005, 9, 778. [89] Grange, C. S.; Meijer, A. J. H. M.; Ward, M. D. Dalton Trans. 2010, 39, 200. [90] Rose, T. L.; D’Antonio, S.; Jillson, M. H.; Kon, A. B.; Suresh, R.; Wang, F. Synth. Met. 1997, 85, 1439. [91] Rosseinsky, D. R.; Mortimer, R. J. Adv. Mater. 2001, 13, 783. [92] Baetens, R.; Jelle, B. P.; Gustavsen, A. Sol. Energy Mater. Sol. Cells 2010, 94, 87. [93] Mortimer, R. J. Annu. Rev. Mater. Res. 2011, 41, 241. [94] Granqvist, C. G. Nature Mater. 2006, 5, 89. [95] Lee, E. S.; DiBartolomeo, D. L. Sol. Energy Mater. Sol. Cells 2002, 71, 465. [96] Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Adv. Mater. 2002, 14, 845. [97] D’Alessandro, D. M.; Keene, F. R. Chem. Rev. 2006, 106, 2270. [98] D’Alessandro, D. M.; Keene, F. R. Chem. Soc. Rev. 2006, 35, 424. [99] (a) Brunschwig, B. S.; Creutz, C.; Sutin, N. Chem. Soc. Rev. 2002, 31, 168. (b) Brunschwig, B. S.; Sutin, N. Coord. Chem. Rev. 1999, 187, 233. (c) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247. [100] (a) Creutz, C. Prog. Inorg. Chem. 1983, 30, 1. (b) Richardson, D. E.; Taube, H. Coord. Chem. Rev. 1984, 60, 107. [101] (a) Kalyanasundaram, K.; Nazeeruddin, M. K. Inorg. Chim. Acta. 1994, 226, 213. (b) Ward, M. D. Chem. Soc. Rev. 1995, 24, 121. [102] Barbara, P. F; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100, 13148. [103] Yamamoto, K.; Oyaizu, K.; Tsuchida, E. J. Am. Chem. Soc. 1996, 118, 12665. [104] Williams, R. D.; Hupp, J. T.; Ramm, M. T.; Nelsen, S. F. J. Phys. Chem. A 1999, 103, 11172. [105] Nelsen, S. F.; Trieber II, D. A.; Nagy, M. A.; Konradsson, A.; Halfen, D. T.; Splan, K. A.; Pladziewicz, J. R. J. Am. Chem. Soc. 2000, 122, 5940. [106] Nelsen, S. F.; Tran, H. Q. J. Am. Chem. Soc. 1998, 120, 298. [107] Nelsen, S. F. Chem. Eur. J. 2000, 6, 581. [108] Nishikitani, Y.; Kobayashi, M.; Uchida, S.; Kubo, T. Electrochim. Acta. 2001, 46, 2035. [109] Venugopal, G.; Quan, X.; Johnson, G.E.; Houlihan, F.M.; Chin, E.; Nalamasu, O. Chem. Mater.1995, 7, 271. [110] Meurs, P. J.; Janssen, R. A. J. J. Org. Chem. 2000, 65, 5712. [111] Asahi, T.; Ohkohchi, M.; Matsusaka, R.; Mataga, N.; Zhang, R.P.; Osuka, A.; Maruyama, K. J. Am. Chem. Soc. 1993, 115, 5665. [112] Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka, M.; Ito, O.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 2607. [113] Wolf, J. F.; Forbes, C. E.; Gould, S.; Shacklette, L. W. J. Electrochem. Soc. 1989, 136, 2887. [114] Boyer, M. I.; Quillard, S.; Louarn, G.; Froyer, G.; Lefrant, S. J. Phys. Chem. B 2000, 104, 8952. [115] Li, X. G.; Huang, .R.; Duan, W.; Yang, Y. L. Chem. Rev. 2002, 102, 2925. [116] Lambert, C.; Noll, G. Angew. Chem., Int. Ed. 1998, 37, 2107. [117] Lambert, C.; Gaschler, W.; Schmalzlin, E.; Meerholz, K.; Brauchle, C. J. Chem. Soc., Perkin Trans. 2 1999, 577. [118] Lambert, C.; Noll, G. J. Am. Chem. Soc. 1999, 121, 8434 [119] Lambert, C.; Noll, G.; Hampel, F. J. Phys. Chem. A 2001, 105, 7751. [120] Lambert, C.; Noll, G. Chem. Eur. J. 2002, 8, 3467. [121] Bonvoisin, J.; Launay, J.-P.; Verbouwe, W.; Van der Auweraer, M.; De Schryver, F. C. J. Phys. Chem. 1996, 100, 17079. [122] Bonvoisin, J.; Launay, J.-P.; Van der Auweraer, M.; De Schryver, F. C. J. Phys. Chem. 1994, 98, 5052. [123] Coropceanu, V.; Malagoli, M.; Andre, J. M.; Bredas, J. L. J. Am. Chem. Soc. 2002, 124, 10519. [124] Creutz, C. Prog. Inorg. Chem. 1983, 30, 1. [125] Crutchley, R. J. Adv. Inorg. Chem. 1994, 41, 273. [126] Brunschwig, B. S.; Creutz, C.; Sutin, N. Chem. Soc. Rev. 2002, 31, 168. [127] Nelsen, S. F.; Adamus, J.; Wolff, J. J. J. Am. Chem. Soc. 1994, 116, 1589. [128] Nelsen, S. F.; Ismagilov, R. F.; Trieber, D. A. Science 1997, 278, 846. [129] Mazur, S.; Streekumar, C.; Schroeder, A. H. J. Am. Chem. Soc. 1976, 98, 6713. [130] Neugebauer, F. A.; Bamberger, S.; Groh,W. R. Chem. Ber. 1975, 108, 2406. [131] Dapperheld, S.; Steckhan, E.; Brinkhaus, K.-H. G.; Esch, T. Chem. Ber. 1991, 124, 2557. [132] Lambert, C.; Noll, G. J. Chem. Soc., Perkin Trans. 2 2002, 2039. [133] Xie, Q.; Perez-Corder, E.; Echegoyen, E. J. Am. Chem. Soc, 1992, 114, 3978. [134] Evans, D. H.; Hu, K. J. Chem. Soc., Faraday Trans. 1996, 92, 3983. [135] Hu, K.; Evans, D. H. J. Phys. Chem. 1996, 100, 3030. [136] Macı’as-Ruvalcaba, N. A.; Evans, D. H. J. Phys. Chem. B 2006, 110, 5155. [137] Hapiot, P.; Kispert, L. D.; Konovalov, V. V.; Saveant, J.-M. J. Am. Chem. Soc. 2001, 123, 6669. [138] Gupta, N.; Linschitz, H. J. J. Am. Chem. Soc. 1997, 119, 6384. [139] Moore, T. S.; Windmill, T. F. J. Chem. Soc. 1912, 1011, 1635. [140] Pauling, L. The Chemical Bond: A Brief Introduction to Modern Structural Chemistry, New York, 1967. [141] Aakeroy, C. B.; Beatty, A. M. Aust. J. Chem. 2001, 54, 409. [142] Mautner, M. Chem. Rev. 2005, 105, 213. [143] Ge, Y.; Lilienthal, R. R.; Smith, D. K. J. Am. Chem. Soc. 1996, 118, 3976. [144] Ge, Y.; Smith, D. K. Anal. Chem. 2000, 72, 1860. [145] Ge, Y.; Miller, L.; Ouimet, T.; Smith, D. K. J. Org. Chem. 2000, 65, 8831. [146] Bu, J.; Lilienthal, N. D.; Woods, J. E.; Nohrden, C. E.; Hoang, K. T.; Truong, D.; Smith, D. K. J. Am. Chem. Soc. 2005, 127, 6423. [147] Chan-Leonor, C.; Martin, S. L.; Smith, D. K. J. Org. Chem. 2005, 70, 10817. [148] Chung, Y. C.; Tu, Y. J.; Lu, S. H.; Hsu, W.-C.; Chiu, K. Y.; Su, Y. O. Org. Lett. 2011, 13, 2826. [149] Nelsen, S. F.; Weaver, M. N.; Zink, J. I.; Telo, J. P. J. Am. Chem. Soc. 2005, 127, 10611. [150] Nishiumi, T.; Nomura, Y.; Higuchi, M.; Yamamoto, K. Chem. Phys. Lett. 2003, 378, 18. [151] Nishiumi, T.; Nomura, Y.; Chimoto, Y.; Higuchi, M.; Yamamoto, K. J. Phys. Chem. B 2004, 108, 7992. [152] Liou, G. S.; Lin, H. Y. Eur. Polym. J. 2006, 42, 1051. [153] Mechouet, M.; Perruchot, C.; Maurel, F.-O.; Aeiyach, S.; Bucher, C.; Chardon, S.; Jouini, M. J. Phys. Chem. A 2012, 116, 970. [1] Yamamoto, K.; Oyaizu, K.; Tsuchida, E. J. Am. Chem. Soc. 1996, 118, 12665. [2] Bulovic, V.; Gu, G.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Nature (London) 1996, 380, 29. [3] Gupta, N.; Linschitz, H. J. Am. Chem. Soc. 1997, 119, 6384. [4] Wolf, J. F.; Forbes, C. E.; Gould, S.; Shacklette, L. W. J. Electrochem. Soc. 1989, 136, 2887. [5] Yamamoto, T.; Kimura, T.; Schiraishi, K. Macromolecules 1999, 32, 8886. [6] (a) Lambert, C.; No‥ll, G. J. Am. Chem. Soc. 1999, 121, 8434. (b) Lindeman, S. V.; Rosokha, S. V.; Sun, D.; Kochi, J. K. J. Am. Chem. Soc. 2002, 124, 843. [7] Evans, D. H.; Hu, K. J. Chem. Soc., Faraday Trans. 1996, 92, 3983. [8] Polcyn, D. S.; Shain, I. Anal. Chem. 1966, 38, 370. [9] Ge, Y.; Lilienthal, R. R.; Smith, D. K. J. Am. Chem. Soc. 1996, 118, 3976. [10] Ge, Y.; Smith, D. K. Anal. Chem. 2000, 72, 1860. [11] Ge, Y.; Miller, L.; Ouimet, T.; Smith, D. K. J. Org. Chem. 2000, 65, 8831. [12] Bu, J.; Lilienthal, N. D.; Woods, J. E.; Nohrden, C. E.; Hoang, K. T.; Truong, D.; Smith, D. K. J. Am. Chem. Soc. 2005, 127, 6423. [13] Chan-Leonor, C.; Martin, S. L.; Smith, D. K. J. Org. Chem. 2005, 70, 10817. [14] Chung, Y. C.; Tu, Y. J.; Lu, S.H.; Hsu, W. C.; Chiu, K. Y.; Su, Y. O. Org. Lett. 2011, 13, 2826. [15] Liou, G. S.; Chang, C. W. Macromolecules 2008, 41, 1667. [16] Hoi, K. H.; Calimsiz, S.; Hopkinson, A. C.; Organ, M. G.; Froese, R. D. J. Chem. Eur. J. 2012, 18, 145. [17] Hirashima, T.; Manabe, O. Chem. Lett. 1975, 259. [18] Kulszewicz-Bajer, I.; Ro’z˙alska, I.; Kuryłek, M. New. J. Chem. 2004, 28, 669. [19] Creutz, C.; Taube, H. J. Am. Chem. Soc.1973, 95, 1086. [1] Gupta, N.; Linschitz, H. J. Am. Chem. Soc. 1997, 119, 6384. [2] Nishiumi, T.; Chimoto, Y.; Hagiwara, Y.; Higuchi, M.; Yamamoto, K. Macromolecules 2004, 37, 2661 [3] Evans, D.H.; Rene, A. Phys. Chem. Chem. Phy., 2012, 14, 4844. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60869 | - |
| dc.description.abstract | 兩個新型二胺N,N-bis(4-aminophenyl)-N’-phenylbenzene-1,4-diamine及N,N-bis(4-aminophenyl)-N’-(4-methoxyphenyl)benzene-1,4-diamine 是藉由兩新穎的二硝基化合物N,N-bis(4-nitrophenyl)-N’-phenylbenzene-1,4-diamine 與 N-(4-methoxyphenyl)-N’,N’-bis(4-nitrophenyl)benzene-1,4-diamine 在聯胺與鉑金屬催化還原而成,此二硝基化合物是由單一硝基三聚體衍生物與氟硝基苯進行親核性取代反應而得。我們藉由單一硝基三聚體衍生物與氟硝基苯成功的合成非對稱的二硝基化合物因為在鄰近硝基三聚體衍生物的二級胺上之氫具有優先被取代性。
本論文分成四個章節,第一章節為總體序論。第二章包含了以N,N-bis(4-aminophenyl)-N’-phenylbenzene-1,4-diamine及N,N-bis(4-aminophenyl)-N’-(4-methoxyphenyl)benzene-1,4-diamine 為主體與二醯氯在低溫下聚合成新型芳香族的聚醯胺。第三章是以兩種新型的二胺與不同的二酸酐利用一步聚合法合成兩系列的芳香族聚醯亞胺。第四章為結論。這些新型含有三苯胺以及二級胺的芳香族高分子之合成與基本特性、電化學特性是值得被研究及比較。所有的高分子在極性非質子型溶劑中有好的薄膜成形能力,高的玻璃轉換溫度和好的熱穩定性。在利用電化學方法下,高分子也展現出兩對可逆的氧化還原峰。在這情況下,如果第二電子比第一個來的容易失去,則被稱為“電位反轉”。此主題以電化學的方式觀察含有二級胺的化合物或是高分子氧化後與不同的質子受體產生誘導氫鍵的能力。存在著質子受體的情況下,化合物或是高分子被氧化過程中原本的第二個氧化波會漸漸消失並且會有新的氧化波產生,而不同的質子受體會影響新的氧化波產生的電位。此外,也探討了取代基影響其電位反轉行為,在第二章節中比較了二醯胺比二硝基化合物有更好的電位反轉特性因為硝基為強拉電子基導致電位並不容易被反轉。第三章描述二醯亞胺相較於二硝基化合物有好的電位反轉效應因為二醯亞胺在較低電位值可與不同的吡啶產生氫鍵,意味著二醯亞胺化合物移去第一電子能力比二硝基化合物更容易。此研究將會是第一個有系統性的研究所設計的化合物到相對應的高分子其電位反轉的行為。 | zh_TW |
| dc.description.abstract | Two new diamine compounds, N,N-bis(4-aminophenyl)-N’-phenylbenzene-1,4-diamine and N,N-bis(4-aminophenyl)-N’-(4-methoxyphenyl)benzene-1,4-diamine were synthesized by hydrazine Pd/C-catalyzed reduction of the corresponding dinitro compounds, N,N-bis(4-nitrophenyl)-N’-phenylbenzene-1,4-diamine and N-(4-methoxyphenyl)-N’,N’-bis(4-nitrophenyl)benzene-1,4-diamine resulting from the aromatic nucleophilic substitution reaction of mononitro-trimer derivatives with 4-fluoronitrobenzene. The asymmetric dinitro compounds from the mononitro-trimer derivatives and 4-fluoronitrobenzene could be successfully synthesized because the secondary amine proton near the nitro group has the priority of reactivity.
This study has been separated into four chapters. Chapter 1 is general introduction. Chapter 2 includes the two novel aromatic polyamides derived from two new aromatic diamines and diacid chloride (IPC) via the low-temperature polycondensation. Chapter 3 describes two series of aromatic polyimides prepared from the same diamines and various tetracarboxylic dianhydrides via one-step polymerization. Chapter 4 is conclusions. The synthesis, basic characterization, and electrochemical properties of these novel triphenylamine-containing aromatic polymers with secondary amine were investigated and compared. All polymers exhibited flexible thin-film-forming ability. In addition to high Tg values and good thermal stability, these obtained polymers also revealed two reversible redox couples by electrochemical method. During electrochemical measurement, if loss of the second electron takes place easily than the first one, it is referred to as “potential inversion”. The topic is about the electrochemically induced hydrogen bond of the secondary amine-containing compounds or polymers with different pyridines. During the oxidative scans of compounds or polymers in presence of proton acceptor, a new redox couple is observed and the original second oxidation wave disappears gradually, while, the different proton acceptor could affect the shift amount of new oxidation potential. Furthermore, the substituent effect on the behavior of potential inversion is also investigated. In chapter 2, we compare diamide with dinitro compounds, and the results show that diamide compounds have excellent potential inversion behavior because the nitro group is strong electron-withdrawing result the potential is not easy to invert. In chapter 3 describes the diimide compounds have better potential inversion properties than dinitro compounds because the hydrogen bond interacts with pyridines at the lower potential values, indicating the first electron of diimide compounds are easier removed than dinitro. This is the first time to investigate the potential inversion behavior systematically from the designed compounds to their corresponding polymers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:33:58Z (GMT). No. of bitstreams: 1 ntu-102-R00549009-1.pdf: 7119936 bytes, checksum: 3f16ef4c785072bea28c7cc703086704 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | CHAPTER 1
General Introduction 1.1 HIGH PERFORMANCE POLYMERS 2 1.1.1 The Aromatic Polyamide Polymerisation Process 3 1.1.1.1 Low-temperature solution methods 4 1.1.1.2 High-temperature solution methods (direct polycondensation) 5 1.1.2 The Aromatic Polyimide Polymerisation Process 6 1.1.2.1 Two-step polycondensation methods 7 1.1.2.2 One-step polycondensation methods 9 1.1.3 Modification of Aromatic Polyamides and Polyimides 9 1.2 FUNDAMENTALS OF ELECTROCHROMISM 14 1.2.1 Inorganic System 14 1.2.1.1 Metal Oxides 14 1.2.1.2 Coordination Complexes 16 1.2.2 Organic System 18 1.2.3 Conducting Polymers 18 1.2.4 Aromatic Polymers Containing Triphenylamine-based 21 1.2.5 Applications of Electrochromic Materials 22 1.3 INTERVALENCE CHARGE TRANSFER 25 1.3.1 Theoretical Background 25 1.3.2 Optically-induced Transition 27 1.3.3 Thermally-induced Transition 28 1.3.4 Electrochemical Methods and the Comproportionation Equilibrium 29 1.3.5 IV-CT in Dinuclear Complexes 29 1.4 REDOX POTENTIAL INVERSION BY IONIC HYDROGEN BOND 32 1.4.1 The Potential Inversion Factors 33 1.4.2 Ionic Hydrogen Bond Definitions 38 1.4.3 Kinetics of Hydrogen Bond Formation and Dissociation 39 1.5 RESEARCH MOTIVATION 40 REFERENCES AND NOTES 43 CHAPTER 2 Synthesis and Electrochemical Potential Inversion Behavior of Triarylamine-containing Aromatic Polyamides ABSTRACT OF CAHPTER 2 54 2.1 INTRODUCTION 55 2.2 EXPERIMENTAL SECTION 57 2.2.1 Materials 57 2.2.2 Monomer Synthesis 58 2.2.3 Polymer Synthesis 64 2.2.3 Preparation of the Polyamide Films 65 2.2.4 Measurements 66 2.3 RESULTS AND DISCUSSION 67 2.3.1 Monomer Synthesis 67 2.3.2 Polymer Synthesis 80 2.3.3 Polymer Properties 85 Basic Characterization 85 Electrochemical Properties 88 2.4 SUMMARY 98 REFERENCES AND NOTES 99 CHAPTER 3 Redox Potential Inversion by Hydrogen Bond between Novel High Performance Polyimides and Pyridines ABSTRACT OF CAHPTER 3 102 3.1 INTRODUCTION 103 3.2 EXPERIMENTAL SECTION 105 3.2.1 Materials 105 3.2.2 Model Compound Synthesis 106 3.2.3 Polymer Synthesis 107 3.2.4 Preparartion of Polyamides Films 108 3.2.5 Measurements 109 3.3 RESULTS AND DISSUSSION 111 3.3.1 Model Compound Synthesis 111 3.3.2 Polymer Synthesis 114 3.3.3 Polymer Properties 120 Basic Characterization 120 Electrochemical Properties 124 3.4 SUMMARY 132 REFERENCES AND NOTES 133 | |
| dc.language.iso | en | |
| dc.subject | 取代基效應 | zh_TW |
| dc.subject | 電位反轉 | zh_TW |
| dc.subject | 電化學法 | zh_TW |
| dc.subject | 質子受體 | zh_TW |
| dc.subject | 氫鍵 | zh_TW |
| dc.subject | 聚醯亞胺 | zh_TW |
| dc.subject | 聚醯胺 | zh_TW |
| dc.subject | substituent effects | en |
| dc.subject | potential inversion | en |
| dc.subject | electrochemical method | en |
| dc.subject | proton acceptor | en |
| dc.subject | hydrogen bond | en |
| dc.subject | polyimide | en |
| dc.subject | polyamide | en |
| dc.title | 新型芳香族高分子合成與電化學的電位反轉特性的研究 | zh_TW |
| dc.title | Synthesis and Electrochemical Properties of Novel Aromatic Polymers Investigated on Potential Inversion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭勝輝(Sheng-Huei Hsiao),陳燿騰(Yaw-Terng Chern),陳志堅(Jyh-Chien Chen) | |
| dc.subject.keyword | 聚醯胺,聚醯亞胺,氫鍵,質子受體,電化學法,電位反轉,取代基效應, | zh_TW |
| dc.subject.keyword | polyamide,polyimide,hydrogen bond,proton acceptor,electrochemical method,potential inversion,substituent effects, | en |
| dc.relation.page | 135 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
