請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60839
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李芳仁(Fang-Jen Lee) | |
dc.contributor.author | Zzu-Jung Chen | en |
dc.contributor.author | 陳思蓉 | zh_TW |
dc.date.accessioned | 2021-06-16T10:32:31Z | - |
dc.date.available | 2018-09-24 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-14 | |
dc.identifier.citation | Ambroggio, E., B. Sorre, et al. (2010). 'ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions.' EMBO J 29(2): 292-303.
Antonny, B. (2006). 'Membrane deformation by protein coats.' Curr Opin Cell Biol 18(4): 386-394. Antonny, B. (2011). 'Mechanisms of membrane curvature sensing.' Annu Rev Biochem 80: 101-123. Bigay, J., J. F. Casella, et al. (2005). 'ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif.' EMBO J 24(13): 2244-2253. Bonifacino, J. S. (2004). 'The GGA proteins: adaptors on the move.' Nat Rev Mol Cell Biol 5(1): 23-32. Brown, H. A., S. Gutowski, et al. (1993). 'ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity.' Cell 75(6): 1137-1144. Cabrera, M., L. Langemeyer, et al. (2010). 'Phosphorylation of a membrane curvature-sensing motif switches function of the HOPS subunit Vps41 in membrane tethering.' J Cell Biol 191(4): 845-859. Catty, P., A. de Kerchove d'Exaerde, et al. (1997). 'The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases.' FEBS Lett 409(3): 325-332. Chantalat, S., S.-K. Park, et al. (2004). 'The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae.' Journal of Cell Science 117(5): 711-722. Chardin, P., S. Paris, et al. (1996). 'A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains.' Nature 384(6608): 481-484. Chen, K. Y., P. C. Tsai, et al. (2010). 'Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p.' J Cell Sci 123(Pt 20): 3478-3489. Chen, K. Y., P. C. Tsai, et al. (2012). 'Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi.' J Cell Sci 125(Pt 19): 4586-4596. Cockcroft, S., G. M. Thomas, et al. (1994). 'Phospholipase D: a downstream effector of ARF in granulocytes.' Science 263(5146): 523-526. Dascher, C. and W. E. Balch (1994). 'Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus.' J Biol Chem 269(2): 1437-1448. Deitz, S. B., A. Rambourg, et al. (2000). 'Sec7p directs the transitions required for yeast Golgi biogenesis.' Traffic 1(2): 172-183. Donaldson, J. G. and C. L. Jackson (2000). 'Regulators and effectors of the ARF GTPases.' Curr Opin Cell Biol 12(4): 475-482. Donaldson, J. G. and C. L. Jackson (2011). 'ARF family G proteins and their regulators: roles in membrane transport, development and disease.' Nat Rev Mol Cell Biol 12(6): 362-375. Efe, J. A., F. Plattner, et al. (2005). 'Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis.' J Cell Sci 118(Pt 20): 4751-4764. Gall, W. E., N. C. Geething, et al. (2002). 'Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo.' Curr Biol 12(18): 1623-1627. Gillingham, A. K. and S. Munro (2007). 'Identification of a guanine nucleotide exchange factor for Arf3, the yeast orthologue of mammalian Arf6.' PLoS One 2(9): e842. Gillingham, A. K. and S. Munro (2007). 'The small G proteins of the Arf family and their regulators.' Annu Rev Cell Dev Biol 23: 579-611. Gillingham, A. K., J. R. Whyte, et al. (2006). 'Mon2, a relative of large Arf exchange factors, recruits Dop1 to the Golgi apparatus.' J Biol Chem 281(4): 2273-2280. Honda, A., M. Nogami, et al. (1999). 'Phosphatidylinositol 4-Phosphate 5-Kinase α Is a Downstream Effector of the Small G Protein ARF6 in Membrane Ruffle Formation.' Cell 99(5): 521-532. Huang, C.-F., C.-C. Chen, et al. (2002). 'The yeast ADP-ribosylation factor GAP, Gcs1p, is involved in maintenance of mitochondrial morphology.' Journal of Cell Science 115(2): 275-282. Jochum, A., D. Jackson, et al. (2002). 'Yeast Ysl2p, homologous to Sec7 domain guanine nucleotide exchange factors, functions in endocytosis and maintenance of vacuole integrity and interacts with the Arf-Like small GTPase Arl1p.' Mol Cell Biol 22(13): 4914-4928. Jones, S., G. Jedd, et al. (1999). 'Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.' Genetics 152(4): 1543-1556. Kahn, R. A. (2009). 'Toward a model for Arf GTPases as regulators of traffic at the Golgi.' FEBS Lett 583(23): 3872-3879. Kahn, R. A., P. Randazzo, et al. (1992). 'The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport.' J Biol Chem 267(18): 13039-13046. Kliouchnikov, L., J. Bigay, et al. (2009). 'Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat.' Mol Biol Cell 20(3): 859-869. Liu, Y. W., C. F. Huang, et al. (2005). 'Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments.' Mol Biol Cell 16(9): 4024-4033. Liu, Y. W., S. W. Lee, et al. (2006). 'Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane.' J Cell Sci 119(Pt 18): 3845-3855. Mesmin, B., G. Drin, et al. (2007). 'Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature.' Biochemistry 46(7): 1779-1790. Natarajan, P., K. Liu, et al. (2009). 'Regulation of a Golgi flippase by phosphoinositides and an ArfGEF.' Nat Cell Biol 11(12): 1421-1426. Nie, Z. and P. A. Randazzo (2006). 'Arf GAPs and membrane traffic.' J Cell Sci 119(Pt 7): 1203-1211. Peyroche, A., R. Courbeyrette, et al. (2001). 'The ARF exchange factors Gea1p and Gea2p regulate Golgi structure and function in yeast.' J Cell Sci 114(Pt 12): 2241-2253. Peyroche, A., S. Paris, et al. (1996). 'Nucleotide exchange on ARF mediated by yeast Gea1 protein.' Nature 384(6608): 479-481. Poon, P. P., D. Cassel, et al. (1999). 'Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function.' EMBO J 18(3): 555-564. Price, S. R., C. F. Welsh, et al. (1992). 'Effects of phospholipid and GTP on recombinant ADP-ribosylation factors (ARFs). Molecular basis for differences in requirements for activity of mammalian ARFs.' J Biol Chem 267(25): 17766-17772. Renault, L., B. Guibert, et al. (2003). 'Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor.' Nature 426(6966): 525-530. Robert, C. H., J. Cherfils, et al. (2004). 'Integrating three views of Arf1 activation dynamics.' J Mol Biol 337(4): 969-983. Schekman, R. and L. Orci (1996). 'Coat proteins and vesicle budding.' Science 271(5255): 1526-1533. Schmid, S. L. and H. Damke (1995). 'Coated vesicles: a diversity of form and function.' FASEB J 9(14): 1445-1453. Sewell, J. L. and R. A. Kahn (1988). 'Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins.' Proc Natl Acad Sci U S A 85(13): 4620-4624. Takai, Y., T. Sasaki, et al. (2001). 'Small GTP-binding proteins.' Physiol Rev 81(1): 153-208. Tsai, P. C., J. W. Hsu, et al. (2013). 'Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p.' Proc Natl Acad Sci U S A 110(8): E668-677. Tsai, P. C., S. W. Lee, et al. (2008). 'Afi1p functions as an Arf3p polarization-specific docking factor for development of polarity.' J Biol Chem 283(24): 16915-16927. Wennerberg, K., K. L. Rossman, et al. (2005). 'The Ras superfamily at a glance.' J Cell Sci 118(Pt 5): 843-846. Wicky, S., H. Schwarz, et al. (2004). 'Molecular interactions of yeast Neo1p, an essential member of the Drs2 family of aminophospholipid translocases, and its role in membrane trafficking within the endomembrane system.' Mol Cell Biol 24(17): 7402-7418. Wu, M., L. Lu, et al. (2004). 'Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1.' Nat Struct Mol Biol 11(1): 86-94. Ziv, I., Y. Matiuhin, et al. (2011). 'A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis.' Mol Cell Proteomics 10(5): M111 009753. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60839 | - |
dc.description.abstract | 磷脂質絲胺酸翻轉酶(Drs2p)為一類P型三磷酸腺酶,位於高機氏體上具有翻轉磷脂質絲胺酸的能力,且在酵母菌中參與許多蛋白質運輸過程;第一腺嘌呤核苷二磷酸核醣化因子相似蛋白(Arl1p)也被知曉調控許多囊泡運輸過程。近期已被證實,Arl1p會與一鳥糞嘌呤核苷三磷酸交換蛋白(GEF),Gea2p,及Drs2p形成複合體,且共同調控Drs2p在高基氏體上翻轉磷脂質絲胺酸的能力;且已被報導Arl1p的反應蛋白之一,Imh1p,為一高基氏蛋白,會與Arl1p形成複合四聚體並衰減其活化蛋白(GAP),Gcs1p,去活化Arl1p-GTP的能力。出乎意料地,在drs2D的細胞中Imh1p是無法位在高基氏體上,但Arl1p這時仍位於順式高基氏體網絡(TGN);Drs2p調控鳥糞嘌呤核苷三磷酸(GTP)水解過程仍未被研究,而在此篇中我們證明Drs2p調控Arl1p的GTP水解過程是藉由干擾其活化因子Gcs1p靠近Arl1p的能力;首先在drs2D的細胞中Arl1p仍位於TGN上,而在提高其活化因子Gcs1p表現量後,野生型細胞中的GTP水解即被增加,但drs2D細胞則否。其次,在缺乏Drs2p時,Gcs1p在磷脂膜上的比例即會下降,也影響到Gcs1p位於TGN的比例。因此,本篇論文證實Drs2p藉由調控Arl1p-GTP水解過程是藉由控制磷脂膜曲度形成而影響到Gcs1p接近及活化Arl1p的能力。 | zh_TW |
dc.description.abstract | Drs2p, a resident type 4 P-type ATPase (P4-ATPase), is required for the phosphatidylserine (PS) flippase activity at the trans-Golgi network (TGN) in yeast and plays essential roles in protein transport in the secretory and endocytic pathways. ARF-like protein, Arl1p, is also known to regulate multiple membrane trafficking pathways. Our recent study demonstrated that Arl1p acts with an Arf-GEF, Gea2p, to modulate Drs2p activity at the TGN. We also reported that the golgin Imh1p, an Arl1p effector, forms the heterotetramer with Arl1p to attenuate GTPase-activating protein (GAP) Gcs1p activity toward Arl1p. Unexpectedly, we observed that the Arl1p still localize at the TGN in drs2-null cells, although the drs2-null exhibits severe defects in recruitment of Imh1p to the Golgi. The mechanism of Drs2p in modulating GTP hydrolysis is unknown. In this study, we demonstrate that Drs2p mediates Arl1p GTP-hydrolysis by interfere the ability of Gcs1p to access Arl1p. We first show that Arl1p remains in GTP-bound state in drs2-null cells. Expressing Gcs1p enhances the Arl1p GTP-hydrolysis in wild-type cells, but not in drs2-null cells. We also observed that lack of Drs2p impairs the Gcs1p to localize to the TGN. Thus, we infer that Drs2p modulates Arl1p GTP-bound state at the TGN through regulating the membrane curvature, which attenuates Gcs1p toward Arl1p. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:32:31Z (GMT). No. of bitstreams: 1 ntu-102-R00448004-1.pdf: 2481522 bytes, checksum: d228979158d8a76971ea5139e98f452f (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | Abstract ------------------------------------------------- 4
中文摘要 -------------------------------------------------- 5 Abbreviations -------------------------------------------- 6 Introduction --------------------------------------------- 7 Materials and Methods ----------------------------------- 23 Results 1. Difference between the observation of Arl1p in the imh1D and drs2D cells ------------- 34 2. Drs2p is required for the inactivation of Arl1p-GTP in imh1D cells ------------- 35 3. Drs2p is required for the Gcs1p-dependent Arl1p dissociation from the TGN ------------- 35 4. The flippase activity of Drs2p is required for Gcs1p mediated inactivation of Arl1p ------------- 36 5. Gcs1p losses its link to the lipid membrane in the drs2D strains ------------- 38 6. The membrane curvatures affect the ability of Gcs1p to approach the liposome ------------- 39 7. The concerntration of phosphoserine can affect the ability of Gcs1p to approach the liposome ------------- 40 8. Three point mutations at ALPS motif disrupt the ability of Gcs1p binding the lipid but still interact with Arl1p ------------- 40 9. The Arl1p can still localize at the TGN with the overexpressing mutant Gcs1p in vivo ------------- 41 10. The recombinant myrArl1 and Gcs1 co-associate on the liposome simutaneously ------------- 42 Discussions --------------------------------------------- 44 Tables Table 1. Yeast strains used in this study ------------- 49 Table 2. Primers used in this study ------------- 50 Figures Figure 1. Regulation of ARF activity by GEF and GAP ----- 51 Figure 2. The structures of the Arf family G protein in GDP- and GTP-bound states ------------- 52 Figure 3. ArfGAP1/Gcs1p activation by ALPS motif recognizes curved membranes ------------- 53 Figure 4. Model for the role of Arf1-GTP in the generation of transport vesicles ------------- 54 Figure 5. Model of the Arl1p pathways ------------- 55 Figure 6. P4-ATPase in Saccharomyces cerevisiae --------- 56 Figure 7. Gea2p, Arl1p, and Drs2p form a protein complex that affects the membrane ------------- 57 Figure 8. The difference of Arl1p localization in wild type, imh1D, and drs2D strains ------------- 58 Figure 9. The inactivation of Arl1p in imh1D cells needs the present of Drs2p ------------- 59 Figure 10. The inactivation of Arl1p in imh1D cells needs the present of Drs2p ------------- 60 Figure 11. The overexpressed Gcs1p can not stimulate the GTPase activity of Arl1p when the cells lack Drs2p ------ 61 Figure 12. The Drs2 Asp560→Asn mutant is a null functional protein ------------- 62 Figure 13. The function of Drs2p is required for the Gcs1p-mediated Arl1p inacitvation ------------- 63 Figure 14. The flippase activity of Drs2p is required for the Gcs1p-mediated Arl1p inacitvation ------------- 64 Figure 15. The interaction between Arl1p and Gcs1p in vivo is weakened in cells lack of the flippase activity of Drs2p ------------- 65 Figure 16. The endogenous Gcs1p bound to the lipids was much less than the drs2D cells ------------- 66 Figure 17. Gcs1p binds to the liposomes with the curvature-dependent manner ------------- 68 Figure 18. Gcs1p binds to the liposomes with the phosphoserine concentration-dependent manner ------------ 69 Figure 19. The point mutations have been proposed to disrupt the ability to bind the liposomes of Gcs1p but this protein still retain the ability to interact with Arl1 d17N Q72L ------------- 70 Figure 20. The Arl1-mRFP still localized at the TGN with the overexpressed ALPS mutant Gcs1p ------------- 71 Figure 21. The Gcs1p ALPS mutant losses the ability to land on the lipid membrane in vivo ------------- 72 Figure 22. The myrArl1p and Gcs1p co-associate at the liposomes simutaneously ------------- 73 Figure 23.Model for the lipid curvature generated by Drs2p affects the Gcs1p accessing Arl1p-GTP at the TGN -------- 74 Figure 24. Arl1p localization in different flippase mutant strains ------------- 75 References -------------------------------------------- 76 | |
dc.language.iso | en | |
dc.title | 探討磷脂質絲胺酸翻轉酶調控第一腺嘌呤核苷三磷酸核醣化因子相似蛋白之三磷酸鳥糞嘌呤水解過程 | zh_TW |
dc.title | Mechanism of flippase Drs2p in modulating GTP hydrolysis of Arl1p | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),陳瑞華(Ruey-Hwa Chen),王昭雯(Chao-Wen Wang) | |
dc.subject.keyword | 第一腺嘌呤核?三磷酸核醣化因子相似蛋白,磷脂質絲胺酸翻轉?三磷酸鳥糞嘌呤水解, | zh_TW |
dc.subject.keyword | Arl1,Drs2,GTPase, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。