請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60797
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林仲彥(Chung-Yen Lin) | |
dc.contributor.author | Kun-Lin Li | en |
dc.contributor.author | 李昆霖 | zh_TW |
dc.date.accessioned | 2021-06-16T10:30:37Z | - |
dc.date.available | 2013-08-17 | |
dc.date.copyright | 2013-08-17 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., & Galle, R. F. (2000). The genome sequence of Drosophila melanogaster. Sci, 287(5461), 2185-2195.
Ai, H. S., Huang, Y. C., Li, S. D., Weng, S. P., Yu, X. Q., & He, J. G. (2008). Characterization of a prophenoloxidase from hemocytes of the shrimp Litopenaeus vannamei that is down-regulated by white spot syndrome virus. Fish Shellfish Immunol., 25(1), 28-39. Allen, N. E., LeTourneau, D. L., & Hobbs, J. (1997). Molecular interactions of a semisynthetic glycopeptide antibiotic with D-alanyl-D-alanine and D-alanyl-D-lactate residues. Antimicrob. Agents Chemother., 41(1), 66-71. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. NAR, 25(17), 3389-3402. Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schaffer, A. A., & Yu, Y. K. (2005). Protein database searches using compositionally adjusted substitution matrices. FEBS J., 272(20), 5101-5109. Azeredo, H. (2009). Betalains: properties, sources, applications, and stability–a review. Int. J. Food Sci. Tech., 44(12), 2365-2376. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths‐Jones, S., Khanna, A., Marshall, M., Moxon, S., & Sonnhammer, E. L. (2004). The Pfam protein families database. NAR, 32(suppl 1), D138-D141. Cahais, V., Gayral, P., Tsagkogeorga, G., MELO‐FERREIRA, J., Ballenghien, M., Weinert, L., Chiari, Y., Belkhir, K., Ranwez, V., & Galtier, N. (2012). Reference‐free transcriptome assembly in non‐model animals from next‐generation sequencing data. Mol. Ecol. Resour., 12(5), 834-845. Christodoulou, D. C., Gorham, J. M., Herman, D. S., & Seidman, J. (2011). Construction of Normalized RNA‐seq Libraries for Next‐Generation Sequencing Using the Crab Duplex‐Specific Nuclease. Curr. Protoc. Mol. Biol., 4.12. 11-14.12. 11. Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., Tokishita, S., Aerts, A., Arnold, G. J., & Basu, M. K. (2011). The ecoresponsive genome of Daphnia pulex. Sci, 331(6017), 555-561. Cox, M. P., Peterson, D. A., & Biggs, P. J. (2010). SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics, 11(1), 485. Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev., 25(1), 9-34. Fagutao, F. F., Maningas, M. B. B., Kondo, H., Aoki, T., & Hirono, I. (2012). Transglutaminase regulates immune-related genes in shrimp. Fish Shellfish Immunol., 32(5), 711-715. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J.-F., Dougherty, B. A., & Merrick, J. M. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Sci, 269(5223), 496-512. Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., & Zeng, Q. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29(7), 644-652. Gross, P., Bartlett, T., Browdy, C., Chapman, R., & Warr, G. (2001). Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp,L. setiferus. Dev. Comp. Immunol., 25(7), 565-577. Huang, Y., Niu, B., Gao, Y., Fu, L., & Li, W. (2010). CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics, 26(5), 680-682. Jung, H., Lyons, R. E., Dinh, H., Hurwood, D. A., McWilliam, S., & Mather, P. B. (2011). Transcriptomics of a giant freshwater prawn (Macrobrachium rosenbergii): de novo assembly, annotation and marker discovery. PLoS One, 6(12), e27938. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., & Tokimatsu, T. (2008). KEGG for linking genomes to life and the environment. NAR, 36(suppl 1), D480-D484. Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. NAR, 28(1), 27-30. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. NAR, 40(D1), D109-D114. Khatri, P., & Drăghici, S. (2005). Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics, 21(18), 3587-3595. Kingston, R. E., Chomczynski, P., & Sacchi, N. (1996). Guanidine methods for total RNA preparation. Curr. Protoc. Mol. Biol., 4.2. 1-4.2. 9. Kitajima, Y., Owaribe, K., Nishizawa, Y., Jokura, Y., & Yaoita, H. (1992). Phorbol ester-and calcium-induced reorganization of 180-kDa bullous pemphigoid antigen on the ventral surface of cultured human keratinocytes as studied by immunofluorescence and immunoelectron microscopy. Exp. Cell Res., 203(1), 17-24. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., & FitzHugh, W. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921. Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3), R25. Leu, J. H., Chen, S. H., Wang, Y. B., Chen, Y. C., Su, S. Y., Lin, C. Y., Ho, J. M., & Lo, C. F. (2011). A review of the major penaeid shrimp EST studies and the construction of a shrimp transcriptome database based on the ESTs from four penaeid shrimp. Mar. Biotechnol., 13(4), 608-621. Li, B., & Dewey, C. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. Li, C., Weng, S., Chen, Y., Yu, X., Lu, L., Zhang, H., He, J., & Xu, X. (2012). Analysis of Litopenaeus vannamei Transcriptome Using the Next-Generation DNA Sequencing Technique. PLoS One, 7(10), e47442. Li, W., & Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658-1659. Lin, X., & Soderhall, I. (2011). Crustacean hematopoiesis and the astakine cytokines. Blood, 117(24), 6417-6424. Lin, X., Soderhall, K., & Soderhall, I. (2008). Transglutaminase activity in the hematopoietic tissue of a crustacean, Pacifastacus leniusculus, importance in hemocyte homeostasis. BMC Immunol., 9(1), 58. Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387-402. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., & Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. NAR, 35(suppl 2), W182-W185. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5(7), 621-628. Oulion, S., Bertrand, S., Belgacem, M. R., Le Petillon, Y., & Escriva, H. (2012). Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum) transcriptome. PLoS One, 7(5), e36554. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8(10), 785-786. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. Ronaghi, M. (2001). Pyrosequencing sheds light on DNA sequencing. Genome Res., 11(1), 3-11. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463-5467. Seishima, M., Esaki, C., Osada, K., Mori, S., Hashimoto, T., & Kitajima, Y. (1995). Pemphigus IgG, but not bullous pemphigoid IgG, causes a transient increase in intracellular calcium and inositol 1, 4, 5-triphosphate in DJM-1 cells, a squamous cell carcinoma line. J. Invest. Dermatol., 104(1), 33-37. Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. NAR, 37(1), 1-13. Sonnhammer, E. L., von Heijne, G., & Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Paper presented at the Ismb. Sridevi, P., Dutta-Gupta, A., & Senthilkumaran, B. (2011). Molecular Cloning and Expression Analysis of fushi tarazu Factor 1 in the Brain of Air-Breathing Catfish, Clarias gariepinus. PLoS One, 6(12), e28867. Stojmirović, A., & Yu, Y.-K. (2010). Robust and accurate data enrichment statistics via distribution function of sum of weights. Bioinformatics, 26(21), 2752-2759. Sundar, L., & Chang, F. (1993). Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus. J. Gen. Microbiol., 139(12), 3139-3148. Toyosaki, T., & Mineshita, T. (1989). Antioxidant effect of riboflavin in aqueous solution. J. Agric. Food Chem., 37(2), 286-289. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28(5), 511-515. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., & Holt, R. A. (2001). The sequence of the human genome. Sci, 291(5507), 1304-1351. Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. JCoB, 7(1-2), 203-214. Zhao, Q. Y., Wang, Y., Kong, Y. M., Luo, D., Li, X., & Hao, P. (2011). Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics, 12(Suppl 14), S2. 李思元, & 莊以光. (2010). DNA 定序技術之演進與發展. J Biomed Lab Sci, 22(2), 49. 林宜靜. (2012). 以表現標誌序列重組南美白蝦之轉錄基因體並比較不同組織間的基因表現. 臺灣大學漁業科學研究所學位論文. 楊志秋. (2004). 不同固醇類荷爾蒙對白蝦非特異性免疫系統和生理的影響. 臺灣大學漁業科學研究所學位論文. 薛月順. (2010). 臺灣 [草蝦王國] 的形成 (1968-1988)-政府與民間扮演的角色 The Transformation of Taiwan into' the Empire of the Giant Tiger Prawn'(1968-1988): The Roles of the Government and the People. 國史館館刊(24), 139-176. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60797 | - |
dc.description.abstract | 本研究以現今台灣蝦類養殖的主要蝦種:南美白蝦(學名: Litopenaeus vannamei,又名白蝦、白對蝦)為對象,利用 RNA-Seq技術,定序白蝦幼蝦與造血組織、血細胞等組織的轉錄體,並整合目前發布在 NCBI上的白蝦高通量定序資料,進行組裝(de novo Assembly),希望能夠最完整的表現出白蝦的轉錄體資訊。經過初步的鹼基讀序品質檢查後,由平均長度為90 bps,共168 million條短讀序開始,利用trinity 進行組裝,共組裝出19萬餘條,濾除掉序列高度相似的組裝序列後,得到約 165,000條的重組序列。經轉譯產物預測分析取得每一組裝序列的最長開放讀架(open reading frame) ,共可轉譯出 62,000 餘條的蛋白質序列,其中有將近 40% 的序列在 nr 資料庫中找到對應 (blastp, e value cutoff: 1E-5)。分析這些對應序列的物種組成,發現 80% 以上為節肢動物門昆蟲綱與甲殼類的相近物種。與KEGG資料庫的比對結果顯示,約有 40% (23,700 /62,026) 以上的組裝序列能在 KEGG中找到對應資料。另以SignalP 與 tmHMM分析蛋白質序列,其中有1,198 條被預測為為膜蛋白,3,730條可能為具訊息胜肽 (signal peptide)。
透過定序資料映射(Mapping) 回組裝所得的轉錄體模板後,便能獲得各組資料中每條重組序列的表現量,進而計算不同狀況下的基因表現差異。本研究分析HPT,HC,PL三個組織之間的差異,並以LPS( Lipopolysaccharide,脂多醣)來模擬細菌感染的情境,透過對不同時間點的血細胞與造血組織檢體的定序資料進行基因表現叢集分析 (clustering Analysis)。在HPT,HC,PL的叢集分析結果,可以看到HC與HPT兩組有較高的內皮組織穿膜遷移(Transendothelial Migration)的活性;另外,觀察Astatine、Antimicrobial peptide、Prophenoloxidase三個標的基因在各組間的表現,發現三者皆在血細胞組有明顯表現,並觀察到Astakine在血細胞實驗組中於注射後六小時,有相對的高量表現,而Antimicrobial peptide與Prophenoloxidase卻恰好相反,在在注射後六小時為最低表現。經由比較叢集分析所得到的表現模式,與血細胞Astakine的表現模式一致的基因還有fushi tarazu-factor 1及zinc metalloproteinase,推論可能是Astakine表現時,還有其他的協同因子共同參與。 最後,我們將組裝序列及註解結果、後續的分析資料整合,建構為線上資料庫,提供即時的轉錄體序列與功能分析查詢,預計將能對甲殼類相關研究社群帶來助益,並對白蝦轉錄體有更深的認識及瞭解,進而有助於整體水產研究深度與廣度的提昇。 | zh_TW |
dc.description.abstract | Whiteleg shrimp (Litopenaeus vannamei), also known as Pacific white shrimp, is one of the major aquaculture species in Taiwan and around world, while the information of molecular regulation and basic gene knowledge on whiteleg shrimp are poor. In this study, we aim to apply Next-Generation Sequencing (NGS) technology to get the most updated and well annotated transcriptome of the Litopenaeus vannamei. Starting from 168 million illumina read pairs with average length around 90 bps from RNA-Seq libraries of post-larvae whole body (PL), hematopoietic tissue (HPT), hemocyte (HC), and larvae (composed by several development stages), we perform Trinity (de novo assembler) to assemble 190 thousand contigs in average length equal to 893 bps. For decreasing of redundant contigs, the assembly were further merged by CD-HIT. Finally, 165,000 contigs around were representative as whole transcriptome of whiteleg shrimp in this study. Sixty-two thousand putative protein products were predicted with at least length >30 residues. Overall 38.5% of the protein products were annotated by nr (E value cutoff: 1E-5). Among these annotated contigs, eighty percent of the best matched sequences are from Phylum Arthropoda. Meanwhile, forty percent of putative proteins can map on KEGG database.
A single dose of lipopolysaccharide (LPS) administration was applied for mimicking the immune response upon bacteria challenge in shrimps. RNA-Seq data from hematopoietic tissue and hemocytes were mapped to the shrimp transcriptome assembly to calculate the expression profiling. The differentially expressed genes (DEGs) were identified and further clustered to reveal the specific expression patterns. In this approach, three important immune genes, Astakine, Antimicrobial peptide, and Prophenoloxidase, are found with high expressions in hemocyte. The expression of Astakine was peaked at six hours after LPS administration, but the expression of Antimicrobial peptide and Prophenoloxidase were in opposite way. Genes like fushi tarazu-factor 1 and zinc metalloproteinase were also found in the same expression patterns by the clustering analysis, suggesting the functional cooperation with Astakine in LPS induced response. Next-Generation Sequencing (NGS) undergoes vigorous development in recent years. Compare to the traditional sequencing, NGS has lower cost and can fetch a large amounts of data with the high efficiency and benefit. In this study, we successfully applied this approach and build a pipeline to recover almost all of the known white shrimp transcripts in NCBI Unigene set and discovered more non-protein coding genes. By integration of all the assembly with annotations, the web database for transcriptome of Litopenaeus vannamei is built and it will be shared to research community worldwide with free access. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:30:37Z (GMT). No. of bitstreams: 1 ntu-102-R00b45025-1.pdf: 3020933 bytes, checksum: c8a9d18246714cdba8d140985798fa62 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iv 目錄 vi 圖目錄 viii 表目錄 ix 第一章、簡介 1 1.1 研究背景 1 1.2 研究動機及目的 8 第二章、材料與方法 9 2.1 材料 9 2.1.1 生物檢體與實驗分組 9 2.1.2 萃取RNA,建置 library,以及高通量定序 9 2.1.3 線上資料取用 10 2.2 組裝流程及產物處理 11 2.2.1 序列資料的前處理 11 2.2.2 de novo assembly 12 2.3 對組裝序列進行蛋白質功能註解 15 2.3.1 重組序列對nr資料庫做相似性比對 15 2.3.2 重組序列經由Trinotate進行功能性註解 16 2.3.3 代謝途徑分析 16 2.4 表現量差異分析 18 2.4.1 表現量估計方法 18 2.4.2 表現量差異分析 19 2.5 硬體資訊及白蝦資料庫建置 19 2.6 資料取得及軟體架構 20 第三章、結果 22 3.1 定序及組裝結果 22 3.2 組裝結果處理 27 3.3 對重組序列進行功能性註解 28 3.3.1 對nr資料庫註解結果 28 3.3.2 Trinotate的註解結果 28 3.3.3 組裝序列整體代謝途徑分析 30 3.3.4 免疫調節之相關基因表現分析 32 3.3.5 表現量差異基因的代謝途徑分析 36 第四章、討論 42 4.1 重組序列組裝之優缺 42 4.2 重組序列之註解 46 4.2.1 對nr資料庫的註解結果 46 4.2.2 對KEGG資料庫的註解結果 49 4.2.3 免疫調節之相關基因表現分析 51 第五章、結論 53 參考文獻 54 | |
dc.language.iso | zh-TW | |
dc.title | 以次世代定序資料重組南美白蝦的轉錄基因體並探討其基因表現 | zh_TW |
dc.title | Deciphering the Transcriptome of Litopenaeus vannamei Using Next-Generation Sequencing | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂建宏,韓玉山,陳柏仰 | |
dc.subject.keyword | 次世代定序,白蝦,轉錄體,組裝,脂多醣, | zh_TW |
dc.subject.keyword | NGS,Litopenaeus vannamei,transcriptome,de novo assembly,LPS, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。