請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60794
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡政安(Chen-An Tsai) | |
dc.contributor.author | Tsung-Lin Li | en |
dc.contributor.author | 李宗霖 | zh_TW |
dc.date.accessioned | 2021-06-16T10:30:29Z | - |
dc.date.available | 2022-01-01 | |
dc.date.copyright | 2020-07-28 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-17 | |
dc.identifier.citation | Berry, M.J.A. and Linoff, G. (1997) Data Mining Techniques. John Wiley Sons, Inc. Blum, A. (1992) Neural Networks in C++: An Object-Oriented Framework for Building Connectionist Systems. John Wiley Sons, Inc. Conejo, J. (2005) Day-Ahead Electricity Price Forecasting Using the Wavelet Transform and ARIMA Models. IEEE Transactions on power systems, vol.20: 1035-1042. Cottrell, M. (1995) Neural Modeling for Time Series: A Statistical Stepwise Method for Weight Elimination. IEEE Transactions on neural networks, vol.6, no.6: 1355-1364. Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems, vol.2: 303-314. Dhamija, A.K. and Bhalla, V.K. (2010) Financial Time Series Forecasting: Comparison of Neural Networks and ARCH Models. International Research Journal of Finance and Economics 49: 194-212. Dickey, D. and Said, E. (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, vol. 71, no. 3: 599-607. Guresen, E., Kayakutlu, G., and Daim, U. (2011) Using artificial neural network models in stock market index prediction. Expert Systems with Applications 38: 10389-10397. Hassibi, B. and Stork, G. (1994) Second order for network pruning: Optimal Brain Surgeon. Advances in Neural Information Processing Systems 5: 164-171. Heaton, J. (2015) Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks. Heaton Research, Inc. Hecht-Nielsen, R. (1990) Neurocomputing. Addison-Wesley. Hyndman, R.J. and Khandakar, Y. (2008) Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, vol.27, issue.3. Jain, A., Mao, J. and Mohiuddin, K. (1996) Artificial neural networks: a tutorial. IEEE Computer 29, Mar: 31-44. Khandelwal, I., Adhikari, R. and Verma, G. (2015) Time Series Forecasting using Hybrid ARIMA and ANN Models based on DWT decomposition. Procedia Computer Science 48: 173-179. Kisi, O. and Uncuoglu, E. (2005) Comparison of three back-propagation training algorithms for two case studies. Indian Journal of Engineering Materials Sciences, vol.12: 434-442. Komogorov, A. (1957) On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Society for the Scientific Study of Reading, vol. 114: 953-956. Kwiatkowski, D., Phillips, P., Schmidt, P. and Shin, Y. (1992) Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, vol. 54, no.1–3: 159-178. Lahmiri, S. (2011) A Comparison Study Of Backpropagation Algorithms In Financial Prediction. International Journal of Computer Science, Engineering and Applications, vol.1: 15-21 Lavine, B. and Blank, T. (2009) 3.18-Feed-Forward Neural Networks. Comprehensive Chemometrics: Chemical And Ciochmmical Data Analysis, vol.1: 571-586. LeCun, Y., Denker, J.S. and Solla, S.A. (1990) Optimal Brain Damage. Advances Neural Information Process System, vol.2: 598-605. Leshno, M., Lin, V., Pinkus, A. and Schocken, S. (1993) Multilayer Feedforward Networks With A Nonpolynomial Activation Function Can Approximate Any Function. Neural Networks, vol.6: 861-867. Liu, C.L. (2010) A Tutorial of the Wavelet Transform. Taipei, Taiwan. Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibon, M., Newondoski, R., Newton, J., Parzen, E. and Winkler, R. (1982) The Accuracy of Extrapolation (Time Series) Methods: Results of a Forecasting Competition. Journal of Forecasting, vol.1: 111-153. Panchal, F.S. and Panchal, M. (2014) Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Network. International Journal of Computer Science and Mobile Computing, vol.3. Issue.11: 455-464. Pannakkong, W., Sriboonchitta, S. and Huynh, V. (2018) An Ensemble Model Of ARIMA And ANN With Restricted Boltzman Machine Based On Decomposition Of Discrete Wavelet Transform For Time Series Forecasting. Journal of Systems Science and Systems Engineering 27(5): 690-708. Panori, A. (2012) Time series analysis using wavelets. University of Macedonia, Department of Economics, MSc Thesis. Phillips, P. and Perron, P. (1988 ) Testing for a unit root in time series regression, Biometrika, vol. 75, no. 2: 335–346. Schlüter, S. and Deuschle, C. (2010) Using Wavelets for Time Series Forecasting-Does It Pay Off. IWQW Discussion paper, no.4. Sfetsos, A. (2000) A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 21: 23-35. Shumway, H. and Stoffer, S. (2016) Time Series Analysis and its Applications With R Examples, fourth edition. Springer. Smith, L. and Demetsky, J. (1997) Traffic Flow Forecasting: Comparison of Modeling Approaches. Journal of Transportation Engineering 123(4): 261-266. Tang, Z. and Fishwick, P.A. (1993) Feedforward Neural Nets as Models for Time Series Forecasting. Journal on Computing, vol.5, no.4. Torrence, C. and Compo, G.P. (1998) A Practical Guide to Wavelet Analysis. American Meteorological Society, vol.79, no.1: 61-78. Wang, L., Zou, H., Su, J. and Chaudhry, S. (2013) An ARIMA-ANN Hybrid Model for Time Series Forecasting. Systems Research and Behavioral Science, vol.30:244-259. Wong, F.S. (1991) Time Series Forecasting Using Backpropagation Neural Networks. Neurocomputing, vol.2: 147-159. Zhang, G., Patuwo, B. and Hu, Y. (2001) A simulation study of artificial neural networks for nonlinear time-series forecasting. Computers Operations Research, vol.28: 381-396. Zhang, G. (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, vol.50: 159-175. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60794 | - |
dc.description.abstract | 在現今不同研究領域中,時間序列預測是其中深具挑戰的項目。通過整合不同領域的技術,數個混合模型先後被提出。然而在前人研究中,即便混合模型的功效有經過驗證,卻未進行過嚴謹的統計檢定來檢視不同模型的差異。 本研究提出基於經驗法則的逐步式ANN模型架構方法和兩個由ARIMA、ANN及DWT構成的混合模型。通過模擬資料比較ARIMA、ANN、ARIMA-ANN、DWT-ARIMA、DWT-A1-ARIMA、DWT-ARIMA-ANN與兩個新提出的模型:DWT-2-ARIMA-ANN及ARIMA-DWT-ANN之表現差異。此外,關於山貓與高麗菜菜價的兩筆真實資料被用於實證模型的功效。新提出的ARIMA-DWT-ANN在模擬資料與山貓資料中皆有最佳的表現,而ANN則是高麗菜菜價資料中表現最好的模型。在二因子變異數分析中,不同模型的差異在結果上是顯著的。 做為一個簡短的結論,ARIMA、ANN、ARIMA-ANN、DWT-ARIMA-ANN與ARIMA-DWT-ANN是較為推薦的模型。由於混合模型面對不同資料的表現可能因內含的ARIMA或ANN架構而有所差異,因此在面對新資料時,應將上述所有模型列入考慮。 | zh_TW |
dc.description.abstract | Nowadays, time series forecasting is a challenging task of interest in many disciplines. A variety of techniques have been developed to deal with the problem through a combination of different disciplines. Although various researches have proved successful for hybrid models, none of them carried out the comparisons with solid statistical test. This study proposes a new stepwise model determination method for ANN based rule of thumb and two novel hybrid models combining ARIMA, ANN and DWT. Simulation studies are conducted to compare the performance of different models, including ARIMA, ANN, ARIMA-ANN, DWT-ARIMA, DWT-A1-ARIMA, DWT-ARIMA-ANN and the two proposed methods, DWT-2-ARIMA-ANN and ARIMA-DWT-ANN. Also, two real data sets, lynx data and cabbage data, are used to demonstrate the applications. Our proposed method, ARIMA-DWT-ANN, outperforms other methods in both simulated datasets and lynx data, while ANN shows a better performance in the cabbage data. We conducted a two-way ANOVA test to compare the performances of methods. The results showed a significant difference between methods. As a brief conclusion, it is suggested to try on ARIMA, ANN, ARIMA-ANN, DWT-ARIMA-ANN and the proposed model, ARIMA-DWT-ANN. Since the performance of these hybrid models may vary across data sets based on their ARIMA alike or ANN alike natures, they should all be considered when encountering a new data to reach an optimal performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:30:29Z (GMT). No. of bitstreams: 1 U0001-0207202017434300.pdf: 1912465 bytes, checksum: d449a7077eaabcdef6c43d3658f91420 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員審定書 (I) 中文摘要 (II) Abstract (III) Content (IV) Figure list (V) Table list (VI) 1. Introduction (1) 1-1. Autoregressive integrated moving average model (ARIMA) (4) 1-2. Artificial Neural Networks (ANN) (14) 1-3. Zhang's hybrid model (ARIMA-ANN) (38) 1-4. Discrete Wavelet Transformation (DWT) (40) 1-5. Ina Kahndelwal's hybrid model (DWT-ARIMA-ANN) (49) 2. Methods and materials (50) 2-1. Proposed methods (50) 2-2. Datasets (59) 2-3. Experimental design (62) 3. Results (64) 3-1. Simulated data results (64) 3-2. Real data results (66) 4. Discussion (68) 5. Conclusion (72) 6. Reference (73) Supplemental figures (108) Supplemental table1: MSE for simulated data (117) Supplemental table2: MAPE for simulated data (120) Supplemental table3: MSE/MAPE for lynx data (123) Supplemental table4: MSE/MAPE for cabbage data (125) Supplemental table5: Model structures (127) | |
dc.language.iso | en | |
dc.title | 以插分整合移動平均自迴歸模型、類神經網路模型與離散小波轉換構成之時間序列混合模型效果評估 | zh_TW |
dc.title | Evaluation of Hybrid Models using ARIMA, ANN, and DWT in Time Series Modeling | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡欣甫(Shin-Fu Tsai),邱春火(Chun-Huo Chiu) | |
dc.subject.keyword | 時間序列預測,混合模型,插分整合移動平均自迴歸模型,類神經網路,離散小波轉換, | zh_TW |
dc.subject.keyword | Time series forecasting,Hybrid model,Autoregressive moving average model,Artificial neural network,Discrete wavelet transformation, | en |
dc.relation.page | 130 | |
dc.identifier.doi | 10.6342/NTU202001271 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0207202017434300.pdf 目前未授權公開取用 | 1.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。