請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60792完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富(Ching-Fuh Lin) | |
| dc.contributor.author | Jiun-Jie Chao | en |
| dc.contributor.author | 趙俊傑 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:30:24Z | - |
| dc.date.available | 2018-08-27 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | Chapter1
[1] CO2 Now website, http://co2now.org/. [2] C. F. Lin, W. F. Su, C. I. Wu, I. C. Cheng, Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice, Wiley-IEEE Press, 1 edition (September 4, 2012). [3] J. Hansen, M. Sato, R. Ruedy, Global Temperature Update through 2012, NASA (January 15 2013). [4] NASA website, http://climate.nasa.gov/evidence. [5] NREL website, Research Cell Efficiency Records, http://www.nrel.gov/ncpv/. [6] E. Becquerel, Memoire sur les effets electriques produits sous l'influence des rayons solaires, Comptes Rendus 9 (1839) 561-567. [7] W. G. Adams, R. E. Day, The Action of Light on Selenium, Proceedings of the Royal Society A25 (1877) 113. [8] D. M. Chapin, C. S. Fuller, G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics 25 (1954) 676-677. [9] Zh. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov, V. G. Trofim, Solar-energy converters based on p-n AlxGa1-xAs-GaAs heterojunctions, Soviet physics: Semiconductors 4 (1971) 2047-2048. [10] B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740. [11] NREL website, Reference Solar Spectral Irradiance: ASTM G-173, http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html. [12] D. S. H Chan, J. R. Phillips, J. C. H. Phang, A comparative study of extraction methods for solar cell model parameters, Solid-State Electronics 29 (1986) 329-337. [13] http://blog.disorderedmatter.eu/2008/03/05/intermediate-current-voltage-characeristics-of-organic-solar-cells/. [14] R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend, A. B. Holmes, The photovoltaic response in poly(p-phenylene vinylene) thin-film devices, Journal of Physics: Condensed Matter 6 (1994) 1379-1394. [15] H. T. Grahn, Introduction to semiconductor physics, World Scientific Publishing Company (1999). [16] P. L. Ong, I. A. Levitsky, Organic/IV, III-V semiconductor hybrid solar cells, Energies 3 (2010) 313-334. [17] G. Horowitz, F. Garnier, Polythiophene-GaAs p-n heterojunction solar cells, Solar Energy Materials 13 (1986) 47-55. [18] F. Garnier, Hybrid organic-on-inorganic photovoltaic devices, Journal of Optics A: Pure and Applied Optics 4 (2002) S247-S251. [19] J. Ackermann, C. Videlot, A. E. Kassmi, R. Guglielmetti, F. Fages, Highly Efficient Hybrid Solar Cells Based on an Octithiophene-GaAs Heterojunction, Advanced Functional Materials 15 (2005) 810-817. [20] H. Bi, R. R. LaPierre, A GaAs Nanowire/P3HT Hybrid Photovoltaic Device, Nanotechnology 20 (2009) 465205-1–465205-5. [21] G. Mariani, R. B. Laghumavarapu, B. T. de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, D. L. Huffaker, Hybrid Conjugated Polymer Solar Cells Using Patterned GaAs Nanopillars, Applied Physics Letters 97 (2010) 013107-1–013107-3. [22] S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, S. Gradečak, Heterojunction Photovoltaics Using GaAs Nanowires and Conjugated Polymers, Nano Letters 11 (2011) 408-413. [23] M. Gratzel, Photoelectrochemical cells, Nature 414 (2001) 338-344. [24] M. A. Green, Third generation photovoltaics: ultra-high conversion effciency at low cost, Progress in Photovoltaics: Research and Applications 9 (2001) 123-135. Chapter2 [1] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices, Nature 409 (2001) 66-69. [2] B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Single GaAs/GaAsP Coaxial Core-Shell Nanowire Lasers, Nano Letters 9 (2009) 112-116. [3] J. A. Czaban, D. A. Thompson, R. R. LaPierre, GaAs Core-Shell Nanowires for Photovoltaic Applications, Nano Letters 9 (2009) 148-154. [4] S. A. Dayeh, D. Susac, K. L. Kavanagh, E. T. Yu, D. Wang, Field Dependent Transport Properties in InAs Nanowire Field Effect Transistors, Nano Letters 8 (2008) 3114-3119. [5] R. S. Wagner, W. C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Applied Physics Letters 4 (1964) 89-90. [6] J. C. Harmand, G. Patriarche, N. Pere-Laperne, M-N. Merat-Combes, L. Travers, F. Glas, Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth, Applied Physics Letters 87 (2005) 203101-1–203101-3. [7] C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, F. J. Tegude, Controllable P-Type Doping of GaAs Nanowires during Vapor-Liquid-Solid Growth, Journal of Applied Physics 105 (2009) 024305-1–024305-5. [8] H. Yu, W. E. Buhro, Solution-Liquid-Solid Growth of Soluble GaAs Nanowires, Advanced Materials 15 (2003) 416-419. [9] Y. Sun, J. A. Rogers, Fabricating Semiconductor Nano/Microwires and Transfer Printing Ordered Arrays of Them onto Plastic Substrates, Nano Letters 4 (2004) 1953-1959. [10] L. Jalabert, P. Dubreuil, F. Carcenac, S. Pinaud, L. Salvagnac, H. Granier, C. Fontaine, High Aspect Ratio GaAs Nanowires Made by ICP-RIE Etching Using Cl2/N2 Chemistry, Microelectronic Engineering 85 (2008) 1173-1178. [11] B. J. Kim, H. Jung, H. Y. Kim, J. Bang, J. Kim, Fabrication of GaN Nanorods by Inductively Coupled Plasma Etching via SiO2 Nanosphere Lithography, Thin Solid Films 517 (2009) 3859-3861. [12] E. Z. Liang, C. J. Huang, C. F. Lin, Use of SiO2 Nanoparticles as Etch Mask to Generate Si Nanorods by Reactive Ion Etch, Journal of Vacuum Science and Technology B 24 (2006) 599-603. [13] D. S. Wang, J. J. Chao, S. C. Hung, C. F. Lin, Fabrication of Large-Area Gallium Arsenide Nanowires using Silicon Dioxide Nanoparticle Mask, Journal of Vacuum Science and Technology B 27 (2009) 2449-2452. [14] Y. Sun, S. Kim, I. Adesida, J. A. Rogers, Bendable GaAs Metal-Semiconductor Field-Effect Transistors Formed with Printed GaAs Wire Arrays on Plastic Substrates, Applied Physics Letters 87 (2005) 083501-1–083501-3. [15] Y. Sun, R. A. Graff, M. S. Strano, J. A. Rogers, Top-Down Fabrication of Semiconductor Nanowires with Alternating Structures along their Longitudinal and Transverse Axes, Small 1 (2005) 1052-1057. [16] Y. Sun, H. S. Kim, E. Menard, S. Kim, I. Adesida, J. A. Rogers, Printed Arrays of Aligned GaAs Wires for Flexible Transistors, Diodes, and Circuits on Plastic Substrates, Small 2 (2006) 1330-1334. [17] S. A. Fortuna, J. Wen, I. S. Chun, X. Li, Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable, Nano Letters 8 (2008) 4421-4427. [18] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays, Nano Letters 9 (2009) 279-282. [19] O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, Design of Light Scattering in Nanowire Materials for Photovoltaic Applications, Nano Letters 8 (2008) 2638-2642. [20] V. I. Osinsky, N. N. Winogradoff, Excitation and Temperature Dependence of Band-Edge Photoluminescence in Gallium Arsenide, Physical Review B 3 (1971) 3341-3346. [21] P. Bernard, C. Bernard, Optical Absorption of Impurities and Defects in Semiconducting Crystals, Springer (2012) 156-158. Chapter3 [1] B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Single GaAs/GaAsP Coaxial Core-Shell Nanowire Lasers , Nano Letters 9 (2009) 112-116. [2] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, K. S. Chung, High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays, Nano Letters 4 (2004) 1059-1062. [3] J. A. Czaban, D. A. Thompson, R. R. LaPierre, GaAs Core-Shell Nanowires for Photovoltaic Applications, Nano Letters 9 (2009) 148-154. [4] O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, A. Lagendijk, Design of Light Scattering in Nanowire Materials for Photovoltaic Applications, Nano Letters 8 (2008) 2638-2642. [5] J. S. Huang, C. Y. Chou, C. F. Lin, Enhancing Performance of Organic-Inorganic Hybrid Solar Cells Using a Fullerene Interlayer from All-Solution Processing, Solar Energy Materials & Solar Cells 94 (2010) 182-186. [6] J. Liu, S. Wang, Z. Bian, M. Shan, C. Huang, Organic/Inorganic Hybrid Solar Cells with Vertically Oriented ZnO Nanowires, Applied Physics Letters 94 (2009) 173107-1–173107-3. [7] C. Y. Kuo, W. C. Tang, C. Gau, T. F. Guo, D. Z. Jeng, Ordered Bulk Heterojunction Solar Cells with Vertically Aligned TiO2 Nanorods Embedded in a Conjugated Polymer, Applied Physics Letters 93 (2008) 033307-1–033307-3. [8] T. Rattanavoravipa, T. Sagawa, S. Yoshikawa, Photovoltaic Performance of Hybrid Solar Cell with TiO2 Nanotubes Arrays Fabricated through Liquid Deposition Using ZnO Template, Solar Energy Materials & Solar Cells 92 (2008) 1445-1449. [9] J. S. Huang, C. Y. Hsiao, S. J. Syu, J. J. Chao, C. F. Lin, Well-Aligned Single-Crystalline Silicon Nanowire Hybrid Solar Cells on Glass, Solar Energy Materials & Solar Cells 93 (2009) 621-624. [10] C. Y. Kuo, C. Gau, Arrangement of Band Structure for Organic-Inorganic Photovoltaics Embedded with Silicon Nanowire Arrays Grown on Indium Tin Oxide Glass, Applied Physics Letters 95 (2009) 053302-1–053302-3. [11] C. J. Novotny, E. T. Yu, P. K. L. Yu, InP Nanowire/Polymer Hybrid Photodiode, Nano Letters 8 (2008) 775-779. [12] J. Ackermann, C. Videlot, A. E. Kassmi, R. Guglielmetti, F. Fages, Highly Efficient Hybrid Solar Cells Based on an Octithiophene-GaAs Heterojunction, Advanced Functional Materials 15 (2005) 810-817. [13] H. Bi, R. R. LaPierre, A GaAs Nanowire/P3HT Hybrid Photovoltaic Device, Nanotechnology 20 (2009) 465205-1–465205-5. [14] S. Kirchmeyer, K. Reuter, Scientific Importance, Properties and Growing Applications of Poly(3,4-ethylenedioxythiophene), Journal of Materials Chemistry 15 (2005) 2077-2088. [15] S. I. Na, G. Wang, S. S. Kim, T. W. Kim, S. H. Oh, B. K. Yu, T. Lee, D. Y. Kim, Evolution of Nanomorphology and Anisotropic Conductivity in Solvent-Modified PEDOT:PSS Films for Polymeric Anodes of Polymer Solar Cells, Journal of Materials Chemistry 19 (2009) 9045-9053. Chapter4 [1] G. Horowitz, F. Garnier, Polythiophene-GaAs P-N Heterojunction Solar Cells, Solar Energy Materials and Solar Cells 13 (1986) 47-55. [2] F. Garnier, Hybrid Organic-on-Inorganic Photovoltaic Devices, Journal of Optics A: Pure and Applied Optics 4 (2002) S247-S251. [3] J. Ackermann, C. Videlot, A. E. Kassmi, R. Guglielmetti, F. Fages, Highly Efficient Hybrid Solar Cells Based on an Octithiophene-GaAs Heterojunction, Advanced Functional Materials 15 (2005) 810-817. [4] J. Ackerman, C. Videlot, A. E. Kasami, Growth of Organic Semiconductors for Hybrid Solar Cell Application, Thin Solid Films 403 (2002) 157-161. [5] K. Karimov, M. M. Ahmed, S. A. Moiz, M. I. Fedorov, Temperature-Dependent Properties of Organic-on-Inorganic Ag/p-CuPc/n-GaAs/Ag Photoelectric Cell, Solar Energy Materials and Solar Cells 87 (2005) 61-75. [6] S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, S. Gradečak, Heterojunction Photovoltaics Using GaAs Nanowires and Conjugated Polymers, Nano Letters 11 (2011) 408-413. [7] H. Guo, L. Wen, X. Li, Z. Zhao, Y. Wang, Analysis of Optical Absorption in GaAs Nanowire Arrays, Nanoscale Research Letters 6 (2011) 617-1–617-6. [8] J. S. Huang, C. Y. Hsiao, S. J. Syu, J. J. Chao, C. F. Lin, Well-Aligned Single-Crystalline Silicon Nanowire Hybrid Solar Cells on Glass, Solar Energy Materials and Solar Cells 93 (2009) 621-624. [9] C. J. Novotny, E. T. Yu, P. K. L. Yu, InP Nanowire/Polymer Hybrid Photodiode, Nano Letters 8 (2008) 775-779. [10] H. Bi, R. R. LaPierre, A GaAs Nanowire/P3HT Hybrid Photovoltaic Device, Nanotechnology 20 (2009) 465205-1–465205-5. [11] G. Mariani, R. B. Laghumavarapu, B. T. de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, D. L. Huffaker, Hybrid Conjugated Polymer Solar Cells Using Patterned GaAs Nanopillars, Applied Physics Letters 97 (2010) 013107-1–013107-3. [12] J. J. Chao, S. C. Shiu, S. C. Hung, C. F. Lin, GaAs Nanowire/Poly(3,4- ethylenedioxythiophene):Poly(styrenesulfonate) Hybrid Solar Cells, Nanotechnology 21 (2010) 285203-1–285203-6. [13] R. S. Wagner, W. C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Applied Physics Letters 4 (1964) 89-90. [14] V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, M. Tchernycheva, J. C. Harmand, V. M. Ustinov, Shape Modification of III-V Nanowires: the Role of Nucleation on Sidewalls, Physical Review E 77 (2008) 031606-1–031606-7. [15] S. A. Fortuna, J. Wen, I. S. Chun, X. Li, Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable, Nano Letters 8 (2008) 4421-4427. [16] S. G. Ihn, J. I. Song, Y. H. Kim, J. Y. Lee, I. H. Ahn, Growth of GaAs Nanowires on Si Substrates Using a Molecular Beam Epitaxy, IEEE Transactions on Nanotechnology 6 (2007) 384-389. [17] L. Jalabert, P. Dubreuil, Franck Carcenac, S. Pinaud, L. Salvagnac, H. Granier, C. Fontaine, High Aspect Ratio GaAs Nanowires Made by ICP-RIE Etching Using Cl2/N2 Chemistry, Microelectronic Engineering 85 (2008) 1173-1178. [18] J. J. Chao, D. S. Wang, S. C. Shiu, S. C. Hung, C. F. Lin, Controlled Formation of Well-Aligned GaAs Nanowires with High Aspect Ratio on Transparent Substrates, Semiconductor Science and Technology 25 (2010) 065014-1–065014-7. [19] S. I. Na, G. Wang, S. S. Kim, T. W. Kim, S. H. Oh, B. K. Yu, T. Lee, D. Y. Kim, Evolution of Nanomorphology and Anisotropic Conductivity in Solvent-Modified PEDOT:PSS Films for Polymeric Anodes of Polymer Solar Cells, Journal of Materials Chemistry 19 (2009) 9045-9053. Chapter5 [1] B. O’Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Gratzel, Electrodeposited Nanocomposite n-p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics, Advanced Materials 12 (2000) 1263-1267. [2] Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell, Langmuir 19 (2003) 3572-3574. [3] G. R. A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. V. Jayaweera, K. Tennakone, Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency, Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 183-185. [4] H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, M. Gratzel, Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture, Nano Letters 7 (2007) 3372-3376. [5] W. Zhang, R. Zhu, B. Liu, S. Ramakrishna, High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode, Applied Energy 90 (2012) 305-308. [6] X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, S. Ramakrishna, An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material, Advanced Materials 22 (2010) E150-E155. [7] S. Tan, J. Zhai, M. Wan, Q. Meng, Y. Li, L. Jiang, D. Zhu, Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B 108 (2004) 18693-18697. [8] K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida, Solid State Dye-Sensitized TiO2 Solar Cell with Polypyrrole as Hole Transport Layer, Chemistry Letters 26 (1997) 471-472. [9] J. Li, T. Osasa, Y. Hirayama, T. Sano, K. Wakisaka, M. Matsumura, Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells Solid-State Dye-Sensitized Solar Cells Using Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene -vinylene] as a Hole-Transporting Material, Japanese Journal of Applied Physics 45 (2006) 8728-8732. [10] W. Zhang, R. Zhu, F. Li, Q. Wang, B. Liu, High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter, The Journal of Physical Chemistry C 115 (2011) 7038-7043. [11] M. Wang, J. Bai, F. L. Formal, S. J. Moon, L. Cevey-Ha, R. Humphry-Baker, C. Gratzel, S. M. Zakeeruddin, M. Gratzel, Solid-State Dye-Sensitized Solar Cells using Ordered TiO2 Nanorods on Transparent Conductive Oxide as Photoanodes, The Journal of Physical Chemistry C 116 (2012) 3266-3273. [12] I. K. Ding, N. Tetreault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gratzel, M. D. McGehee, Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance, Advanced Functional Materials 19 (2009) 2431-2436. [13] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks, Chemistry of Materials 22 (2010) 1915-1925. [14] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, M. Gratzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films 516 (2008) 4613-4619. [15] L. M. Peter, Dye-sensitized nanocrystalline solar cells, Physical Chemistry Chemical Physics 9 (2007) 2630-2642. [16] A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, K. G. U. Wijayantha, Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells, The Journal of Physical Chemistry B 104 (2000) 949-958. [17] A. Hagfeldt, M. Gratzel, Molecular Photovoltaics, Accounts of Chemical Research 33 (2000) 269-277. [18] X. Peng, A. Chen, Dense and high-hydrophobic rutile TiO2 nanorod arrays, Applied Physics A 80 (2005) 473-476. [19] A. S. Attar, M. S. Ghamsari, F. Hajiesmaeibaigi, S. Mirdamadi, K. Katagiri, K. Koumoto, Sol-gel template synthesis and characterization of aligned Anatase-TiO2 nanorod arrays with different diameter, Materials Chemistry and Physics 113 (2009) 856-860. [20] Y. Yang, X. H. Wang, L. T. Li, Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization, Materials Science and Engineering: B 149 (2008) 58-62. [21] C. A. Chen, Y. M. Chen, A. Korotcov, Y. S. Huang, D. S. Tsai, K. K. Tiong, Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal-organic chemical vapor deposition, Nanotechnology 19 (2008) 075611. [22] Z. Liu, C. Liu, J. Ya, E. Lei, Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells, Renewable Energy 36 (2011) 1177-1181. [23] H. E. Wang, Z. Chen, Y. H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J. A. Zapien, I. Bello, S. T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates, Applied Physics Letters 96 (2010) 263104. [24] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications, Nano Letters 8 (2008) 3781-3786. [25] Y. Li, M. Zhang, M. Guo, X. Wang, Hydrothermal growth of well-aligned TiO2 nanorod arrays: Dependence of morphology upon hydrothermal reaction conditions, Rare Metals 29 (2010) 286-291. [26] B. Liu, E. S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, Journal of the American Chemical Society 131 (2009) 3985-3990. [27] E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions, Journal of the American Chemical Society 126 (2004) 7790-7791. [28] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Advanced Materials 18 (2006) 572-576. [29] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel, Conversion of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers (X =C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes, Journal of the American Chemical Society 115 (1993) 6382-6390. [30] S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, A. J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells, The Journal of Physical Chemistry B 101 (1997) 2576-2582. [31] G. Schlichthorl, S. Y. Huang, J. Sprague, A. J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy, The Journal of Physical Chemistry B 101 (1997) 8141-8155. [32] B. Enright, D. Fitzmaurice, Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film, The Journal of Physical Chemistry 100 (1996)1027-1035. Chapter6 [1] M. A. Green, Third generation photovoltaics: ultra-high conversion effciency at low cost, Progress in Photovoltaics: Research and Applications 9 (2001) 123-135. [2] http://www.webexhibits.org/causesofcolor/9.html [3] N. A. Spaldin, Magnetic Materials: Fundamentals and Device Applications, Cambridge University Press (2003) 67-68. [4] R. J. Gale, Spectroelectrochemistry: Theory and Practice, Springer (1988) 96. [5] S. M. Sze, H. K. Gummel, Appraisal of Semiconductor-metal-semiconductor transistor, Solid-State Electronics. Pergamon Press 9 (1966) 751-769. [6] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Advanced Materials 18 (2006) 572-576. [7] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells, Advanced Materials 23 (2011) 4636-4643. [8] M. J. Chen, J. F. Chang, J. L. Yen, C. S. Tsai, E. Z. Liang, C. F. Lin, C. W. Liu, Electroluminescence and photoluminescence studies on carrier radiative and nonradiative recombinations in metal-oxide-silicon tunneling diodes, Journal of Applied Physics 93 (2003) 4253-4259. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60792 | - |
| dc.description.abstract | 由於能源耗損與環保議題的因素下,可再生的替代能源越顯重要。在眾多的再生能源當中,由於太陽能其來源最為豐沛且潔淨,而極具潛力。太陽能的研究發展在全球越來越扮演著極為重要的角色且持續不斷的增加。目前,薄膜型太陽能電池被視作為最具潛力可以改變太陽能發電成本架構的太陽能電池種類,而在眾多薄膜型太陽能電池的種類當中,有機無機混成太陽能電池由於同時具備了無機材料與有機材料的優點,而引發了研究熱潮。在本論文中,研究主題將涵蓋了以砷化鎵作為材料的混成太陽能電池、固態染料敏化太陽能電池、以及熱載子太陽能電池。在以砷化鎵作為材料的混成太陽能電池方面,我們完成了一種結合透明導電高分子PEDOT:PSS與垂直型態n型砷化鎵奈米線的一種新型混成太陽能電池。在製作以二氧化鈦奈米柱作為光電極的固態染料敏化太陽能電池方面,研究結果顯示,具有足夠密集的二氧化鈦奈米柱陣列可同時提供足夠的染料吸附以及有效的載子收集能力。在熱載子太陽能電池的研究方面,我們製作了一種可收集熱載子的光電轉化新型裝置,其結構包含了一有機電洞傳輸層、一有機電子傳輸層、以及一層以金屬做為材料的光吸收層,此元件所量測到的極大開路電壓,可證實的確收集到具高能量的電子與電洞。 | zh_TW |
| dc.description.abstract | For both energy consumption and environmental reasons, the importance of alternative renewable energy sources has increased in significance. Among various renewable energy, solar energy holds tremendous potential because it is the most abundant and cleanest energy. The research and development of solar cells are playing a significant role all over the world and have continuously increased. Nowadays, thin-film solar cells are considered to have the potential to revolutionize the cost structure of photovoltaic electricity generation. For several types of thin-film solar cells, the organic-inorganic hybrid solar cell has attracted a great deal of interest because it takes both advantages of organic and inorganic materials. In this thesis, the contents include the study of GaAs-based hybrid solar cells, solid-state dye-sensitized solar cells, and hot carrier solar cells. For GaAs-based hybrid solar cells, we demonstrate a new type of hybrid solar cell based on a heterojunction between PEDOT:PSS and vertically aligned n-type GaAs nanowire arrays. Form our TiO2 nanorod based solid-state dye-sensitized solar cell, the results show that solar cells with sufficiently dense arrays of long TiO2 nanorods can give good dye loading and the efficient carrier collection. For the hot carrier solars, we demonstrate a new type of hot-carrier photo-electric conversion apparatus, which comprises an organic hole transportation layer, an organic electron transportation layer, and a light-absorbing metal layer. This achieved high open-circuit voltage is the strong evidence that this device has collected the high-energy electrons and holes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:30:24Z (GMT). No. of bitstreams: 1 ntu-102-F94943042-1.pdf: 5629073 bytes, checksum: a26ba3b80359d5ce650a2860b3b60534 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1-1 The era of fossil energy 1 1-2 Solar energy 4 1-3 Basic principle of solar cell operation 6 1-3-1 Solar irradiation 7 1-3-2 Photovoltaic effect 8 1-4 Hybrid solar cells 11 1-4-1 GaAs-based hybrid solar cells 12 1-4-2 Dye-sensitized solar cells 13 1-5 Hot carrier solar cells 15 1-6 Objective and aim of this study 18 1-7 Thesis overview 21 1-8 References 24 Chapter 2 Controlled formation of well-aligned GaAs nanowires with a high aspect ratio on transparent substrates 27 2-1 Introduction 28 2-2 Experimental procedures 29 2-2-1 Formation of the monolayer of SiO2 nanoparticles 30 2-2-2 Using the monolayer of SiO2 nanoparticles as the dry-etch mask 33 2-3 Transfer of GaAs nanowires onto the glass receiver substrate 37 2-4 Optical properties of GaAs nanowires 41 2-5 Summary 46 2-6 References 47 Chapter 3 GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells 50 3-1 Introduction 51 3-2 Experimental procedures 53 3-2-1 Dry-etching to fabricate GaAs NW arrays with the inductively coupled plasma reactive ion etching system 54 3-2-2 Hemispherical reflectance measurement of GaAs NW arrays 57 3-2-3 Attaching GaAs NW arrays onto the PEDOT:PSS conductive polymer layer coated on ITO glass 59 3-3 J-V characteristics of the GaAs NW/PEDOT:PSS solar cells 59 3-4 The trends in cell performance for GaAs NW/PEDOT:PSS hybrid solar cells 63 3-5 Summary 67 3-6 References 68 Chapter 4 GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer 71 4-1 Introduction 72 4-2 Experimental procedures 74 4-2-1 Attaching GaAs NW arrays onto the PEDOT:PSS conductive polymer layer coated on ITO glass 75 4-2-2 Spinning P3HT in advance onto the fabricated GaAs nanowire arrays 76 4-3 Morphology & Hemispherical reflectance measurement of GaAs NW arrays 77 4-4 J-V characteristics of the GaAs nanowire/P3HT/CleviosTM P HC V4solar cells 82 4-5 Contact morphology between organic materials and GaAs nanowire arrays 89 4-6 Summary 91 4-7 References 91 Chapter 5 The Efficient Vacuum-Assisted Method to Improve the Pore-Filling of Hole Transporting Material in TiO2 Nanorod Based Solid-State Dye-Sensitized Solar Cells 95 5-1 Introduction 96 5-2 Hydrothermal synthesis of TiO2 nanorods 98 5-3 Device fabrication of solar cells 102 5-4 SEM images of as-grown TiO2 nanorods and morphology of P3HT infiltration 104 5-5 Crystallization feature of as-grown TiO2 nanorods 106 5-6 J-V characteristics of three types of fabricated cells with different treatment at D149-TiO2/P3HT interface 108 5-7 J-V characteristics of fabricated cells with TiO2 nanorods grown by the two-step growth process 110 5-8 J-V characteristics of fabricated cells with/without the P3HT vacuum-assisted infiltration 112 5-9 Summary 114 5-10 References 115 Chapter 6 Hot Carrier Solar Cells 121 6-1 Introduction 121 6-2 Proposed hot-carrier photo-electric conversion apparatus 125 6-3 Device fabrication and the corresponding J–V characteristics 129 6-4 Summary 139 6-5 References 141 Chapter 7 Conclusions 142 | |
| dc.language.iso | en | |
| dc.subject | 砷化鎵奈米線陣列 | zh_TW |
| dc.subject | 砷化鎵型態混成太陽能電池 | zh_TW |
| dc.subject | 二氧化鈦奈米柱 | zh_TW |
| dc.subject | 固態染料敏化太陽能電池 | zh_TW |
| dc.subject | 熱載子太陽能電池 | zh_TW |
| dc.subject | TiO2 nanorod | en |
| dc.subject | GaAs-based hybrid solar cell | en |
| dc.subject | solid-state dye-sensitized solar cell | en |
| dc.subject | hot carrier solar | en |
| dc.subject | GaAs nanowire array | en |
| dc.title | 奈米結構型態有機無機混成太陽能電池 | zh_TW |
| dc.title | Nanostructured Organic-Inorganic Hybrid Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李嗣涔(Si-Chen Lee) | |
| dc.subject.keyword | 砷化鎵奈米線陣列,砷化鎵型態混成太陽能電池,二氧化鈦奈米柱,固態染料敏化太陽能電池,熱載子太陽能電池, | zh_TW |
| dc.subject.keyword | GaAs nanowire array,GaAs-based hybrid solar cell,TiO2 nanorod,solid-state dye-sensitized solar cell,hot carrier solar, | en |
| dc.relation.page | 146 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
