請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60783完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳和麟 | zh_TW |
| dc.contributor.advisor | Ho-Lin Chen | en |
| dc.contributor.author | 施承佑 | zh_TW |
| dc.contributor.author | Cheng-Yu Shih | en |
| dc.date.accessioned | 2021-06-16T10:30:00Z | - |
| dc.date.available | 2024-07-09 | - |
| dc.date.copyright | 2020-07-17 | - |
| dc.date.issued | 2020 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocolswith a leader. InDistributed Computing, pages 61–75. Springer, 2006.
[2] D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semi-linear. InProceedings of the twenty-fifth annual ACM symposium on Principles ofdistributed computing, pages 292–299. ACM, 2006. [3] C.-H. Chan and H.-L. Chen. Deterministic function computation with phosphatetransferreactionnetworks. PosterintheThirteenthAnnualConferenceontheFoun-dations of Nanoscience, 2016. [4] H.-L. Chen, D. Doty, and D. Soloveichik. Deterministic function computation withchemical reaction networks.Natural computing, 13(4):517–534, 2014. [5] H.-L.Chen,D.Doty,andD.Soloveichik. Rate-independentcomputationincontinu-ouschemicalreactionnetworks. InProceedingsofthe5thconferenceonInnovationsin theoretical computer science, pages 313–326. ACM, 2014. [6] M.B.Elowitz,A.J.Levine,E.D.Siggia,andP.S.Swain. Stochasticgeneexpressionin a single cell.Science, 297(5584):1183–1186, 2002. [7] J. Esparza. Decidability and complexity of petri net problems—an introduction. InLectures on Petri Nets I: Basic Models, pages 374–428. Springer, 1998. [8] A. Hjelmfelt, E. D. Weinberger, and J. Ross. Chemical implementation of neuralnetworks and turing machines.Proceedings of the National Academy of Sciences,88(24):10983–10987, 1991. [9] F.HornandR.Jackson. Generalmassactionkinetics.Archiveforrationalmechanicsand analysis, 47(2):81–116, 1972. [10] H.R.Horton,L.A.Moran,R.S.Ochs,J.D.Rawn,andK.G.Scrimgeour.Principlesof biochemistry. Prentice Hall Upper Saddle River, 1996. [11] R. M. Karp and R. E. Miller. Parallel program schemata.Journal of Computer andsystem Sciences, 3(2):147–195, 1969. [12] H. F. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, et al.Molecular cell biology, volume 4. Citeseer, 2000. [13] M. O. Magnasco. Chemical kinetics is turing universal.Physical Review Letters,78(6):1190, 1997. [14] H.H.McAdamsandA.Arkin. Stochasticmechanismsingeneexpression.Proceed-ings of the National Academy of Sciences, 94(3):814–819, 1997. [15] M. L. Minsky.Computation: finite and infinite machines. Prentice-Hall, Inc., 1967. [16] L. Qian and E. Winfree. Scaling up digital circuit computation with dna strand dis-placement cascades.Science, 332(6034):1196–1201, 2011. [17] L.QianandE.Winfree. Asimplednagatemotifforsynthesizinglarge-scalecircuits.Journal of the Royal Society Interface, 8(62):1281–1297, 2011. [18] J. Reece, L. A. Urry, N. Meyers, M. L. Cain, S. A. Wasserman, P. V. Minorsky, R. B.Jackson, and B. N. Cooke.Campbell biology. Pearson Higher Education AU, 2011. [19] D.Soloveichik,M.Cook,E.Winfree,andJ.Bruck. Computationwithfinitestochas-tic chemical reaction networks.natural computing, 7(4):615–633, 2008. [20] D. Soloveichik, G. Seelig, and E. Winfree. Dna as a universal substrate for chemicalkinetics.Proceedings of the National Academy of Sciences, 107(12):5393–5398,2010. [21] G.M.Süel,J.Garcia-Ojalvo,L.M.Liberman,andM.B.Elowitz. Anexcitablegeneregulatory circuit induces transient cellular differentiation.Nature, 440(7083):545–550, 2006. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60783 | - |
| dc.description.abstract | 伴隨磷酸鹽轉移子反應是指磷酸基從供給者到接收者的轉移反應,這在生化環境中是相當常見的反應。 除了自然系統外,像是 seesaw gates 這類的合成分子系統都等同於一個伴隨磷酸鹽轉移子反應網路(的子集合)。本論文中,我們主要探討伴隨磷酸鹽轉移子反應網路的計算能力,如同字面上,伴隨磷酸鹽轉移子反應網路是僅由伴隨磷酸鹽轉移子反應所構成的一種化學反應網路。在過往的研究中,化學反應網路的計算能力已經被證明恰巧是任意的半線性函數。而伴隨磷酸鹽轉移子反應網路的計算能力則是根據分子最多能攜帶的磷酸基數量決定。
在本論文中,我們提出了一個正式描述伴隨磷酸鹽轉移子反應網路的模型。我們證明當分子最多僅能攜帶一個磷酸基的網路中,函數輸出必定是輸入的某兩個子集合數量的差值。另一方面,當分子能攜帶三個磷酸基或是兩個功能有所差異的磷酸基,伴隨磷酸鹽轉移子反應網路有能力「模擬」任意的化學反應網路。最後,當每個分子僅能最多攜帶兩個功能一致的磷酸基 (等同於兩個磷酸基一定得依序添加/移除),這樣的計算能力會是嚴格落在前兩者之間。 | zh_TW |
| dc.description.abstract | Phosphate transfer reactions involves the transfer of a phosphate group from a donor molecule to an accepter, which is ubiquitous in biochemistry. Besides natural systems, some synthetic molecular systems such as seesaw gates are also equivalent to (subsets of) phosphate transfer reaction networks. In this paper, we study the computational power of phosphate transfer reaction networks (PTRNs). PTRNs are chemical reaction networks (CRNs) with only phosphate transfer reactions. Previously, it is known that a function can be deterministically computed by a CRN if and only if it is semilinear. The computational power of PTRNs, on the other hand, depends on how many phosphate group each molecule can carry.
In this paper, we present a formal model to describe PTRNs. We prove that when each molecule can only carry one phosphate group, the output must be the total input count in a subset $S_1$ minus the total input count of another subset $S_2$. On the other hand, when every molecule can carry up to three phosphate groups, or two phosphate group which may have different functions, PTRNs can ``simulate' arbitrary CRNs. Finally, when each molecule can carry up to two functionally-identical phosphate groups, (or, equivalently, two phosphate groups which must be added/removed in a sequential manner), the computational power is strictly between the above two cases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:30:00Z (GMT). No. of bitstreams: 1 U0001-0207202017580600.pdf: 621636 bytes, checksum: 12e178279826768539810d99ddf2b64b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 v
摘要 vii Abstract ix 1 Introduction 1 1.1 Chemical Reaction Networks 1 1.2 Phosphate Transfer Reaction Networks 2 2 Preliminary 5 2.1 Chemical reaction network 5 2.2 Stable computation of functions 6 2.3 Phosphate transfer reaction network 6 2.4 Phosphate transfer reaction computer 7 3 One-Star Phosphate Transfer Reaction Computer 9 3.1 Proof of Theorem 3.1 12 4 Three-Star Phosphate Transfer Reaction Computer 17 5 Two-star Phosphate Transfer Reaction Computer 21 5.1 Two-star vs. one-star 21 5.2 Two-star vs. three-star 22 5.3 Distinct phosphate groups 24 6 Conclusion 27 Bibliography 29 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 隨機系統 | zh_TW |
| dc.subject | 化學反應網路 | zh_TW |
| dc.subject | 伴隨磷酸鹽轉移子反應網路 | zh_TW |
| dc.subject | 決定性計算 | zh_TW |
| dc.subject | 代幣轉移系統 | zh_TW |
| dc.subject | Chemical Reaction Networks | en |
| dc.subject | Deterministic Computation | en |
| dc.subject | Stochastic Systems | en |
| dc.subject | Token-transferring Systems | en |
| dc.subject | Phosphate Transfer Reaction Networks | en |
| dc.title | 探討伴隨磷酸鹽轉移子反應網路的計算能力 | zh_TW |
| dc.title | On the Computational Power of Phosphate Transfer Reaction Networks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 顏嗣鈞;呂學一;于天立 | zh_TW |
| dc.contributor.oralexamcommittee | Hsu-chun Yen;Hsueh-I Lu;Tian-Li Yu | en |
| dc.subject.keyword | 化學反應網路,決定性計算,隨機系統,代幣轉移系統,伴隨磷酸鹽轉移子反應網路, | zh_TW |
| dc.subject.keyword | Chemical Reaction Networks,Deterministic Computation,Stochastic Systems,Token-transferring Systems,Phosphate Transfer Reaction Networks, | en |
| dc.relation.page | 31 | - |
| dc.identifier.doi | 10.6342/NTU202001272 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2020-07-03 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-2.pdf 未授權公開取用 | 607.28 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
