Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60775
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝
dc.contributor.authorYi-Fang Hoen
dc.contributor.author何懿芳zh_TW
dc.date.accessioned2021-06-16T10:29:40Z-
dc.date.available2018-08-25
dc.date.copyright2013-08-25
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citation邱欣怡。2004。藉最適化方法探討添加益菌質於囊壁材質對微膠囊化原生菌之影響。碩士論文。國立臺灣大學畜產學研究所。
黃懿儂。2010。台灣黏質發酵乳之機能性研究。碩士論文。國立臺灣大學動物科學技術學系。
謝馨慧。2011。糖液克弗爾粒於不同發酵基質中之菌相分布與其分離菌株抗腸炎機能性之研究。碩士論文。國立臺灣大學動物科學技術學系。
Amit-Romach, E., Z. Uni, and R. Reifen. 2008. Therapeutic potential of two probiotics in inflammatory bowel disease as observed in the trinitrobenzene sulfonic acid model of colitis. Dis. Colon Rectum. 51: 1828-1836.
Bajaj, I. B., S. A. Survase, P. S. Saudagar, and R. S. Singhal. 2007. Gellan gum: Fermentative production, downstream processing and applications. Food Technol. Biotechnol. 45: 341-354.
Bajracharya, P., M. A. Islam, T. Jiang, S. K. Kang, Y. J. Choi, and C. S. Cho. 2012. Effect of microencapsulation of Lactobacillus salivarus 29 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. J. Microencapsul. 29: 429-436.
Balejko, E., E. Kucharska, and J. Balejko. 2013. Experimental immunology Effect of Lactobacillus rhamnosus GG encapsulation on interleukin 10 release in vitro. Cent. Eur. J. Immunol. 1: 37-41.Carvalho, A. S., J. Silva, P. Ho, P. Teixeira, F. X. Malcata, and P. Gibbs. 2004. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int. Dairy J. 14: 835-847.
Champagne, C. P., N. J. Gardner, and D. Roy. 2005. Challenges in the addition of probiotic cultures to foods. Crit. Rev. Food Sci. Nutr. 45: 61-84.
Chan, E.-S., S.-L. Wong, P.-P. Lee, J.-S. Lee, T. B. Ti, Z. Zhang, D. Poncelet, P. Ravindra, S.-H. Phan, and Z.-H. Yim. 2011. Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydr. Polym. 83: 225-232.
Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones. 2004. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Methods. 56: 27-35.
Chandrasekaran, R., R. P. Millane, S. Arnott, and E. D. T. Atkins. 1988. The crystal structure of gellan. Carbohydr. Res. 175: 1-15.
Chen, H. C., S. Y. Wang, and M. J. Chen. 2008. Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol. 25: 492-501.
Chen, M. J., K. N. Chen, and Y. T. Kuo. 2007. Optimal thermotolerance of Bifidobacterium bifidum in gellan-alginate microparticles. Biotechnol. Bioeng. 98: 411-419.
Chen, Y. P., P. J. Hsiao, W. S. Hong, T. Y. Dai, and M. J. Chen. 2012. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 95: 63-74.
Cook, M. T., G. Tzortzis, D. Charalampopoulos, and V. V. Khutoryanskiy. 2012. Microencapsulation of probiotics for gastrointestinal delivery. J. Control Release. 162: 56-67.
Cui, J. H., J. S. Goh, P. H. Kim, S. H. Choi, and B. J. Lee. 2000. Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int. J. Pharm. 210: 51-59.
de Moreno de LeBlanc, A., C. Matar, E. Farnworth, and G. Perdigon. 2007. Study of Immune Cells Involved in the Antitumor Effect of Kefir in a Murine Breast Cancer Model. J. Dairy Sci. 90: 1920-1928.
Dieleman, Palmen, Akol, Bloemena, PeNA, Meuwissen, and R. Van. 1998. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol. 114: 385-391.
Ding, W. K., and N. P. Shah. 2007. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 72: M446-450.
Ding, W. K., and N. P. Shah. 2009. An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. J. Food Sci. 74: M53-61.
Diniz, R. O., L. K. Garla, J. M. Schneedorf, and J. C. T. Carvalho. 2003. Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacol. Res. 47: 49-52.
Evageliou, V., M. Mazioti, I. Mandala, and M. Komaitis. 2010. Compression of gellan gels. Part II: Effect of sugars. Food Hydrocoll. 24: 392-397.
Ewaschuk, J. B., and L. A. Dieleman. 2006. Probiotics and prebiotics in chronic inflammatory bowel diseases. World J. Gastroenterol. 12: 5941-5950.
FAO/WHO. 2006. Probiotics in food : health and nutritional properties and guidelines for evaluation : Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, Cordoba, Argentina, 1-4 October 2001 [and] Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 30 April -1 May 2002 (Rome [Italy] : Food and Agriculture Organization of the United Nations, World Health Organization).
Fialho, A. M., L. M. Moreira, A. T. Granja, A. O. Popescu, K. Hoffmann, and I. Sa-Correia. 2008. Occurrence, production, and applications of gellan: current state and perspectives. Appl. Microbiol. Biotechnol. 79: 889-900.
Fundueanu, G., C. Nastruzzi, A. Carpov, J. Desbrieres, and M. Rinaudo. 1999. Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials. 20: 1427-1435.
Gbassi, G. K., T. Vandamme, S. Ennahar, and E. Marchioni. 2009. Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int. J. Food Microbiol. 129: 103-105.
Gerbsch, N., and R. Buchholz. 1995. New processes and actual trends in biotechnology. FEMS Microbiol. Rev. 16: 259-269.
Goncalves, L. M. D., M. T. O. Barreto, A. M. B. R. Xavier, M. J. T. Carrondo, and J. Klein. 1992. Inert supports for lactic acid fermentation —a technological assessment. Appl. Microbiol. Biotechnol.. 38: 305-311.
Grasdalen, H., and O. Smidsrod. 1987. Gelation of gellan gum. Carbohydr. Polym. 7: 371-393.
Guzel-Seydim, Z. B., T. Kok-Tas, A. K. Greene, and A. C. Seydim. 2011. Review: functional properties of kefir. Crit. Re.v Food Sci. Nutr. 51: 261-268.
Hansen, L. T., P. M. Allan-Wojtas, Y. L. Jin, and A. T. Paulson. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19: 35-45.
Heidebach, T., P. Forst, and U. Kulozik. 2012. Microencapsulation of probiotic cells for food applications. Crit. Rev. Food Sci. Nutr. 52: 291-311.
Hong, W. S., H. C. Chen, Y. P. Chen, and M. J. Chen. 2009. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. Int. Dairy J. 19: 244-251.
Hong, W. S., Y. P. Chen, and M. J. Chen. 2010. The antiallergic effect of kefir lactobacilli. J. Food Sci. 75: H244-253.
Ian, S. 2005. Biotechnology of Microbial Polysaccharides in Food. In Food Biotechnology, Second Edition (CRC Press).
Jimenez-Pranteda, M. L., D. Poncelet, M. E. Nader-Macias, A. Arcos, M. Aguilera, M. Monteoliva-Sanchez, and A. Ramos-Cormenzana. 2012. Stability of lactobacilli encapsulated in various microbial polymers. J. Biosci. Bioeng. 113: 179-184.
Junter, G. A., and T. Jouenne. 2004. Immobilized viable microbial cells: from the process to the proteome… or the cart before the horse. Biotechnol. Adv. 22: 633-658.
Kailasapathy, K. 2002. Microencapsulation of probiotic bacteria: technology and potential applications. Curr. Issues Intest. Microbiol. 3: 39-48.
Kasapis, S., P. Giannouli, M. W. N. Hember, V. Evageliou, C. Poulard, B. Tort-Bourgeois, and G. Sworn. 1999. Structural aspects and phase behaviour in deacylated and high acyl gellan systems. Carbohydr Polym. 38: 145-154.
Kebler, L. F. 1921. “California bees.”. J. Am. Pharm. Assoc. 10: 939-943.
Kim, S. J., S. Y. Cho, S. H. Kim, O. J. Song, I. I. S. Shin, D. S. Cha, and H. J. Park. 2008. Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. Lebensm. Wiss. Technol. 41: 493-500.
Krasaekoopt, W., B. Bhandari, and H. Deeth. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13: 3-13.
Krasaekoopt, W., B. Bhandari, and H. Deeth. 2004. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14: 737-743.
Lacroix, C., F. Grattepanche, Y. Doleyres, and D. Bergmaier. 2005. Immobilised Cell Technologies for the Dairy Industry. In Applications of Cell Immobilisation Biotechnology, V. Nedović, and R. Willaert, eds. (Springer Netherlands), pp. 295-319.
Liu, J. R., S. Y. Wang, Y. Y. Lin, and C. W. Lin. 2002. Antitumor Activity of Milk Kefir and Soy Milk Kefir in Tumor-Bearing Mice. Nutr. Cancer. 44: 183-187.
Liu, J. R., M. J. Chen, and C. W. Lin. 2005. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem. 53: 2467-2474.
Liu, J. R., S. Y. Wang, M. J. Chen, H. L. Chen, P. Y. Yueh, and C. W. Lin. 2006. Hypocholesterolaemic effects of milk-kefir and soyamilk-kefir in cholesterol-fed hamsters. Br. J. Nutr. 95: 939-946.
Lutz, L. 1899. Recherches biologiques sur la constitution du Tibi. Bull. Trimest. Soc. Mycol. Fr. 15: 68-72.
Magalhaes, K. T., G. V. M. Pereira, D. R. Dias, and R. F. Schwan. 2010. Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J. Microbiol. Biotechnol. 26: 1241-1250.
Mandal, S., A. K. Puniya, and K. Singh. 2006. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int. Dairy J. 16: 1190-1195.
Martin-Dejardin, F., B. Ebel, G. Lemetais, H. Nguyen Thi Minh, P. Gervais, R. Cachon, and O. Chambin. 2013. A way to follow the viability of encapsulated Bifidobacterium bifidum subjected to a freeze-drying process in order to target the colon: Interest of flow cytometry. Eur J Pharm Sci. 49: 166-174.
McMaster, L. D., S. A. Kokott, S. J. Reid, and V. R. Abratt. 2005. Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140. Int. J. Food Microbiol. 102: 231-237.
Miguel, M. G. da C. P., P. G. Cardoso, K. T. Magalhaes, R. T. Schwan. 2011. Profile of microbial communities present in tibico (sugary kefir) grains from different Brazilian States. World J. Microbiol. Biotechnol. 27: 1875-1884.
Miyoshi, E., T. Takaya, and K. Nishinari. 1994. Gel—sol transition in gellan gum solutions. II. DSC studies on the effects of salts. Food Hydrocoll. 8: 529-542.
Miyoshi, E., T. Takaya, and K. Nishinari. 1996. Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions. Carbohydr Polym. 30: 109-119.
Moinas, M., M. Horisberger, and H. Bauer. 1980. The structural organization of the Tibi grain as revealed by light, scanning and transmission microscopy. Arch. Microbiol. 128: 157-161.
Moreira, M. E., M. H. Dos Santos, G. P. Zolini, A. T. Wouters, J. C. Carvalho, and J. M. Schneedorf. 2008. Anti-inflammatory and cicatrizing activities of a carbohydrate fraction isolated from sugary kefir. J Med Food. 11: 356-361.
Moritaka, H., H. Fukuba, K. Kumeno, N. Nakahama, and K. Nishinari. 1991. Effect of monovalent and divalent cations on the rheological properties of gellan gels. Food Hydrocoll. 4: 495-507.
Moritaka, H., K. Nishinari, M. Taki, and H. Fukuba. 1995. Effects of pH, Potassium Chloride, and Sodium Chloride on the Thermal and Rheological Properties of Gellan Gum Gels. J. Agric. Food Chem. 43: 1685-1689.
Morris, E. R., K. Nishinari, and M. Rinaudo. 2012. Gelation of gellan – A review. Food Hydrocoll. 28: 373-411.
Morris, V. 2006. Bacterial Polysaccharides. In Food Polysaccharides and Their Applications (CRC Press), pp. 413-454.
Mortazavian, A., S. H. Razavi, M. R. Ehsani, and S. Sohrabvandi. 2007. Principles and methods of microencapsulation of probiotic microorganisms. Iran. J. Biotechnol. 5: 1-18.
Ogawa, E., H. Matsuzawa and M. Iwahashi. 2002. Conformational transition of gellan gum of sodium, lithium, and potassium types in aqueous solutions. Food Hydrocoll. 16: 1-9.
Omoto, T., Y. Uno, and I. Asai. 1999. The latest technologies for the application of gellan gum. In Physical Chemistry and Industrial Application of Gellan Gum, K. Nishinari, ed. (Springer Berlin Heidelberg), pp. 123-126.
Prakash, S., C. Tomaro-Duchesneau, S. Saha, and A. Cantor. 2011. The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J. Biomed. Biotechnol. 2011.
Raymond, V., and M. Frank. 2001. Gellan Gum. In Handbook of Dietary Fiber (CRC Press).
Rodrigues, K. L., L. R. Caputo, J. C. Carvalho, J. Evangelista, and J. M. Schneedorf. 2005a. Antimicrobial and healing activity of kefir and kefiran extract. Int. J. Antimicrob. Agents. 25: 404-408.
Rodrigues, K. L., J. C. T. Carvalho, and J. M. Schneedorf. 2005b. Anti-inflammatory properties of kefir and its polysaccharide extract. Inflammopharmacology. 13: 485-492.
Ross, R. P., C. Desmond, G. F. Fitzgerald, and C. Stanton. 2005. Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol. 98: 1410-1417.
Rybka, S., and K. Kailasapathy. 1995. The survival of culture bacteria in fresh and freeze-dried AB yoghurts. Aust. J. Dairy Technol. 50: 51-57.
Sabra, W., A. P. Zeng, and W. D. Deckwer. 2001. Bacterial alginate: physiology, product quality and process aspects. Appl. Microbiol. Biotechnol. 56: 315-325.
Santos, A., M. San Mauro, A. Sanchez, J. M. Torres, and D. Marquina. 2003. The antimicrobial properties of different strains of Lactobacillus spp. isolated from kefir. Syst. Appl. Microbiol. 26: 434-437.
Schultsz, C., F. M. Van Den Berg, F. W. Ten Kate, G. N. Tytgat, and J. Dankert. 1999. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology. 117: 1089-1097.
Schutyser, E., S. Struyf, and J. Van Damme. 2003. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14: 409-426.
Silva, K. R., S. A. Rodrigues, L. X. Filho, and A. S. Lima. 2009. Antimicrobial activity of broth fermented with kefir grains. Appl. Biochem. Biotechnol. 152: 316-325.
Stanton, C., R. P. Ross, G. F. Fitzgerald, and D. Van Sinderen. 2005. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol. 16: 198-203.
Sun, W., and M. W. Griffiths. 2000. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17-25.
Tang, J., M. A. Tung, and Y. Zeng. 1996. Compression strength and deformation of gellan gels formed with mono- and divalent cations. Carbohydr Polym. 29: 11-16.
Tang, J., R. Mao, M. A. Tung, and B. G. Swanson. 2001. Gelling temperature, gel clarity and texture of gellan gels containing fructose or sucrose. Carbohydr Polym. 44: 197-209.
Urbanska, A. M., J. Bhathena, and S. Prakash. 2007. Live encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral delivery: preparation and in vitro analysis of alginate-chitosan microcapsules. Can. J. Physiol. Pharmacol. 85: 884-893.
Venugopal, V. 2008. Seaweed Hydrocolloids. In Marine Products for Healthcare (CRC Press), pp. 297-338.
Vinderola, C. G., J. Duarte, D. Thangavel, G. Perdigon, E. Farnworth, and C. Matar. 2005. Immunomodulating capacity of kefir. J. Dairy Res. 72: 195-202.
Vinderola, G., G. Perdigon, J. Duarte, E. Farnworth, and C. Matar. 2006. Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation. J. Dairy Res. 73: 472-479.
Vongsa, R. A., N. P. Zimmerman, and M. B. Dwinell. 2009. CCR6 regulation of the actin cytoskeleton orchestrates human beta defensin-2- and CCL20-mediated restitution of colonic epithelial cells. J. Biol. Chem. 284: 10034-10045.
Vujičić, I. F., M. Vulić, and T. Konyves. 1992. Assimilation of cholesterol in milk by kefir cultures. Biotechnol. Lett. 14: 847-850.
Wael, S., and D. Wolf-Dieter. 2004. Alginate- Polysaccharide of Industrial Interest and Diverse Biological Functions. In Polysaccharides (CRC Press).
Waldherr, F. W., V. M. Doll, D. Meissner, and R. F. Vogel. 2010. Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol. 27: 672-678.
Ward, H. M. 1892. The Ginger-Beer Plant, and the Organisms Composing it: A Contribution to the Study of Fermentation-Yeasts and Bacteria. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 183: 125-197.
Wirtz, S., C. Neufert, B. Weigmann, and M. F. Neurath. 2007. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2: 541-546.
Yunyu, Y., N. Ronald, and P. Denis. 2004. Immobilization of Cells in Polysaccharide Gels. In Polysaccharides (CRC Press).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60775-
dc.description.abstract本研究之目的乃開發可耐熱益生菌微膠囊,改善益生菌在高溫環境及儲存期間的存活率。研究中選用結蘭膠與褐藻酸鈉兩種食用膠與脫脂乳粉,混合成膠作為囊壁材質分別包覆益生菌Lactobacillus kefiranofaciens M1(M1)及Lb. mali APS1(APS1)。經耐熱試驗後選定囊壁材質添加比例濃度,結蘭膠、褐藻酸鈉與脫脂乳粉的比例分別是:1%、2%、10%。以此濃度製作微膠囊,冷凍乾燥後保存於4oC,測試其儲存期間、儲存後再經熱處理(水浴自25oC加熱至75oC,並放置1分鐘)與先經熱處理再經模擬腸胃環境之存活菌數。M1與APS1經包覆凍乾後的起始菌數分別為8.3和10.3 log CFU/g,,經8週的儲存後,M1和APS1菌數各能維持於6.6與9.7 log CFU/g以上;而儲存8週再加熱後,仍分別有5.8和9.2 log CFU/g的存活菌數;熱處理後再以模擬胃液處理,菌數平均下降0.3和0.5 log CFU/g;先加熱再以膽鹽處理則平均下降0.5與2.1 log CFU/g。
為了解益生菌經微膠囊化後,對菌株原有機能性之影響,因此以小鼠結腸炎模式評估經熱處理的益生菌微膠囊是否仍具有抗結腸炎的效果。結果發現包覆凍乾之M1(HCM1)與APS1(HCAPS1)可顯著降低糞便出血評分,減緩體重減輕及恢復結腸縮短之情形,且於組織切片觀察到HCAPS1可明顯舒緩腸道發炎。然而在小鼠盲腸內容物菌相分析中,內容物的乳酸桿菌與大腸桿菌群菌數比例在各組間並無差異。進一步探討HCM1與HCAPS1之抗腸炎可能機制,將益生菌微膠囊與人類腸道上皮細胞共培養,結果顯示HCM1與HCAPS1無法顯著提升跨上皮電阻值及趨化素CCL20的分泌量,由此推論加強上皮屏障可能並非HCM1與HCAPS1抗腸炎的可能機制。
由以上結果得知褐藻膠、結蘭膠與脫脂乳粉混合作為囊壁材質,具有提升菌株在儲存期間、高溫環境及模擬腸胃液中的存活率。另外在抗腸炎動物試驗當中,發現經熱處理的益生菌微膠囊仍可發揮其機能性,但其作用機制有待進一步研究探討。未來有機會應用在添加於溫熱飲品中的益生菌微膠囊,以提升產品的機能性。
zh_TW
dc.description.abstractMicrobial viability is an important factor to exert health benefits, especially in host’s lower digestive tract. However, most of microorganisms cannot stand the adverse conditions like industrial heating processes and the digestive juice. Hence the purpose of the study was to develop heat-tolerant probiotic microcapsules to improve the survival of probiotics under heat treatment and the passage through the simulated gastrointestinal fluid (SGIF). The functionality of encapsulated probiotics was also evaluated.
Gellan gum, sodium alginate and skim milk powder were incorporated as coating materials to encapsulate Lactobacillus kefiranofaciens M1 (M1) and Lb. mali APS1 (APS1) separately. The optimal proportion of gellan gum, sodium alginate and skim milk powder in microcapsules was determined by preliminary thermal-tolerant test. The bacterial counts in freeze-dried microcapsules stored at 4 oC were determined at different storage periods and heat treatments, followed by treatment of the SGIF. The initial bacteria counts of M1 and APS1 were 8.3 and 10.3 log CFU/g. The bacteria counts of M1 and APS1 after 8 weeks storage were 6.6 and 9.7 log CFU/g. After heat treatment, the bacteria numbers dropped to 5.8 and 9.2 log CFU/g. The viability of encapsulated M1 and APS1 were above 5.0 log CFU/g and 7.0 log CFU/g in SGIF test. On the contrary, the two free strains cannot detect viable bacteria counts after 8 weeks among these tests.
Since both M1and APS1 demonstrated an anti-colitis effect in our previous study, we further investigated the anti-colitis effect of encapsulated these two strains in vivo and in vitro. Both heated encapsulated M1 and APS1 could significantly ameliorate the symptoms of DSS-induced colitis, including bleeding score, weight losing and colon length shortening, when compared with non-encapsulated groups in vivo. It is worth to notice that the distribution of lactobacilli and coliform in cecum was no difference among all experimental groups. We further studied the possible mechanism involved in the anti-colitis effect in vitro. The results indicated that both encapsulated strains could significantly increase the transepithelial electrical resistance (TEER) in Caco2 monolayer when compared with the blank group. However, the elevation of TEER value and CCL20 production was not found in the heated encapsulated strains.
These findings revealed that encapsulated strains with heat-stable coating materials could elevate the viability during storage, heat resistance and simulated gastrointestinal conditions. Furthermore, the heat encapsulated strains demonstrated an anti-colitis effect in vivo. The heat-tolerant microcapsule might provide a high potential to apply the probiotics in warm drinks in the near future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:29:40Z (GMT). No. of bitstreams: 1
ntu-102-R00626021-1.pdf: 4363271 bytes, checksum: 453a555ee1171d69c9980b4ed5978b43 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents序言 i
中文摘要 ii
英文摘要 iv
壹、文獻探討 1
一、 益生菌微膠囊 1
(一) 簡介 1
(二) 包埋益生菌之囊壁材質 4
二、 克弗爾 15
(一) 牛乳克弗爾 15
(二) 糖液克弗爾 19
貳、材料與方法 23
第一部分:微膠囊化益生菌之儲存試驗 23
一、 實驗材料 23
(一) 微膠囊化組成基質及其他添加物 23
(二) 菌種 23
(三) 微生物培養基 23
二、 實驗方法 23
(一) 乳酸菌元之保存與活化 23
(二) 菌體之收集 24
(三) 微膠囊化樣品製備 24
(四) 儲存試驗之菌數測定 26
(五) 掃描式電子顯微鏡 27
第二部分:益生菌微膠囊之抗腸炎機能性評估 28
一、 實驗材料 28
(一) 樣品 28
(二) 實驗動物 28
(三) 實驗細胞 28
二、 實驗方法 29
(一) 結腸炎小鼠動物試驗 29
(二) 腸道上皮細胞體外試驗 33
(三) 統計分析 34
叁、結果與討論 35
第一部分:微膠囊化益生菌之儲存試驗 35
一、 儲存於4oC之安定性與耐熱性 35
二、 微膠囊益生菌凍乾樣品於儲存後再經熱處理對模擬胃液耐受性之影響 38
三、 微膠囊益生菌凍乾樣品於儲存後再經熱處理對膽鹽耐受性之影響 39
四、 微膠囊益生菌凍乾樣品顯微構造 41
第二部分:益生菌微膠囊之抗腸炎機能性評估 44
一、 結腸炎小鼠動物試驗 44
(一) 腸炎症狀評估 44
(二) 組織切片觀察與評分 48
(三) 盲腸內容物菌相分析 54
二、 腸道上皮細胞體外試驗 57
(一) 單層膜完整性之評估 57
(二) 趨化素CCL20分泌量之測定 61
肆、結論 67
參考文獻 68
作者小傳 78
dc.language.isozh-TW
dc.subject抗腸炎機能性zh_TW
dc.subject耐熱zh_TW
dc.subject微膠囊化zh_TW
dc.subjectMicroencapsulationen
dc.subjectHeat-toleranceen
dc.subjectAnti-colitis propertiesen
dc.title微膠囊化對Lactobacillus kefiranofaciens M1及Lactobacillus mali APS1耐熱及抗結腸炎機能性之影響zh_TW
dc.titleEffects of microencapsulation on heat-tolerance and anti-colitis properties of Lactobacillus kefiranofaciens M1 and Lactobacillus mali APS1en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林慶文,陳小玲,劉?睿,陳希嘉
dc.subject.keyword微膠囊化,耐熱,抗腸炎機能性,zh_TW
dc.subject.keywordMicroencapsulation,Heat-tolerance,Anti-colitis properties,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved