Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60738
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉緒宗(Shiuh-Tzung Liu)
dc.contributor.authorYen-Pin Hsuen
dc.contributor.author許晏賓zh_TW
dc.date.accessioned2021-06-16T10:28:07Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-02-04
dc.identifier.citation1. Khusnutdinova, J. R.; Milstein, D., Angew. Chem. Int. Ed. 2015, 54, 12236-12273.
2. Liu, Y.; Yue, X.; Luo, C.; Zhang, L.; Lei, M., EEM 2019, 2, 292-312.
3. Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R., J. Am. Chem. Soc. 1995, 117, 2675-2676.
4. Pandey, P.; Dutta, I.; Bera, J. K., Proc. Natl. Acad. Sci. India A 2016, 86, 561-579.
5. Montag, M.; Zhang, J.; Milstein, D., J. Am. Chem. Soc. 2012, 134, 10325-10328.
6. Gunanathan, C.; Milstein, D., Chem. Rev. 2014, 114, 12024-12087.
7. Hou, C.; Zhang, Z.; Zhao, C.; Ke, Z., Inorg. Chem. 2016, 55, 6539-6551.
8. Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K., Organometallics 2013, 32, 2046-2049.
9. Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K., ACS Catal. 2015, 5, 5468-5485.
10. Hale, L. V. A.; Malakar, T.; Tseng, K.-N. T.; Zimmerman, P. M.; Paul, A.; Szymczak, N. K., ACS Catal. 2016, 6, 4799-4813.
11. Fujita, K.-i.; Yoshida, T.; Imori, Y.; Yamaguchi, R., Org. Lett. 2011, 13, 2278-2281.
12. Vaska, L.; DiLuzio, J. W., J. Am. Chem. Soc. 1961, 83, 1262-1263.
13. Park, Y. J.; Huh, S.; Youm, K. T.; Jun, Y. J.; Jun, M. J., Bull. Korean Chem. Soc. 2000, 21, 939-942.
14. Sanchez-Delgado, R. A.; Rosales, M.; Andriollo, A., Inorg. Chem. 1991, 30, 1170-1173.
15. Zhang, L.; Raffa, G.; Nguyen, D. H.; Swesi, Y.; Corbel-Demailly, L.; Capet, F.; Trivelli, X.; Desset, S.; Paul, S.; Paul, J.-F.; Fongarland, P.; Dumeignil, F.; Gauvin, R. M., J. Catal. 2016, 340, 331-343.
16. Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.; Beller, M., Angew. Chem. Int. Ed. 2011, 50, 9593-9597.
17. Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D., J. Am. Chem. Soc. 2005, 127, 10840-10841.
18. Cho, D.; Ko, K. C.; Lee, J. Y., Organometallics 2013, 32, 4571-4576.
19. Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D., Nat. Chem 2013, 5, 122-125.
20. Sarbajna, A.; Dutta, I.; Daw, P.; Dinda, S.; Rahaman, S. M. W.; Sarkar, A.; Bera, J. K., ACS Catal. 2017, 7, 2786-2790.
21. Brewster, T. P.; Goldberg, J. M.; Tran, J. C.; Heinekey, D. M.; Goldberg, K. I., ACS Catal. 2016, 6, 6302-6305.
22. Tseng, K.-N. T.; Rizzi, A. M.; Szymczak, N. K., J. Am. Chem. Soc. 2013, 135, 16352-16355.
23. Gunanathan, C.; Hölscher, M.; Pan, F.; Leitner, W., J. Am. Chem. Soc. 2012, 134, 14349-14352.
24. Fogler, E.; Balaraman, E.; Ben-David, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D., Organometallics 2011, 30, 3826-3833.
25. Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T.; Song, D., Chem. Commun. 2011, 47, 8349-8351.
26. Roy, B. C.; Samim, S. A.; Panja, D.; Kundu, S., Catal. Sci. Technol. 2019, 9, 6002-6006.
27. Shi, J.; Hu, B.; Ren, P.; Shang, S.; Yang, X.; Chen, D., Organometallics 2018, 37, 2795-2806.
28. Roy, B. C.; Debnath, S.; Chakrabarti, K.; Paul, B.; Maji, M.; Kundu, S., Org. Chem. Front. 2018, 5, 1008-1018.
29. Zhang, C.; Zhao, J.-P.; Hu, B.; Shi, J.; Chen, D., Organometallics 2019, 38, 654-664.
30. Liu, T.; Guo, M.; Orthaber, A.; Lomoth, R.; Lundberg, M.; Ott, S.; Hammarström, L., Nat. Chem 2018, 10, 881-887.
31. Valencia, M.; Pereira, A.; Müller-Bunz, H.; Belderraín, T. R.; Pérez, P. J.; Albrecht, M., Chem. Eur. J. 2017, 23, 8901-8911.
32. Baráth, E., Catalysts 2018, 8, 671.
33. Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.; Brandt, P., Chem. Soc. Rev. 2006, 35, 237-248.
34. Enyong, A. B.; Moasser, B., J. Org. Chem. 2014, 79, 7553-7563.
35. Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R., Angew. Chem. Int. Ed. 1997, 36, 285-288.
36. Watson, A. J. A.; Williams, J. M. J., Science 2010, 329, 635-636.
37. Yang, S.-T.; Shen, P.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Organometallics 2017, 36, 3110-3116.
38. Cheng, T.-P.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Dalton Trans. 2012, 41, 3468-3473.
39. Chang, Y.-H.; Liu, Z.-Y.; Liu, Y.-H.; Peng, S.-M.; Chen, J.-T.; Liu, S.-T., Dalton Trans. 2011, 40, 489-494.
40. Roberts, M. P.; Nguyen, V.; Ashford, M. E.; Berghofer, P.; Wyatt, N. A.; Krause-Heuer, A. M.; Pham, T. Q.; Taylor, S. R.; Hogan, L.; Jiang, C. D.; Fraser, B. H.; Lengkeek, N. A.; Matesic, L.; Gregoire, M.-C.; Denoyer, D.; Hicks, R. J.; Katsifis, A.; Greguric, I., J. Med. Chem. 2015, 58, 6214-6224.
41. Huang, C.-Y.; Kuan, K.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Organometallics 2014, 33, 2831-2836.
42. Li, M.; Hsu, Y.-P.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., J. Organomet. Chem. 2020, 927, 121537.
43. Chen, P.-H.; Liu, Y.-H.; Liu, S.-T., J. Chin, Chem. Soc. 2019, 66, 972-981.
44. Hardy, E. E.; Wyss, K. M.; Eddy, M. A.; Gorden, A. E. V., Chem. Commun. 2017, 53, 5718-5720.
45. Rowland, J. M.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 2002, 41, 2754-2760.
46. Giancotti, G.; Cancellieri, M.; Balboni, A.; Giustiniano, M.; Novellino, E.; Delang, L.; Neyts, J.; Leyssen, P.; Brancale, A.; Bassetto, M., Eur. J. Med. Chem 2018, 149, 56-68.
47. Mete, T. B.; Singh, A.; Bhat, R. G., Tetrahedron Lett. 2017, 58, 4709-4712.
48. Prasanna, N.; Srinivasan, S.; Rajagopal, G.; Athappan, P. R., Indian. J. Chem. 2001, 40, 426-429.
49. Nag, S.; Butcher, R. J.; Bhattacharya, S., Eur. J. Inorg. Chem. 2007, 2007, 1251-1260.
50. Vijayan, P.; Yadav, S.; Yadav, S.; Gupta, R., Inorganica Chim. Acta. 2020, 502, 119285.
51. Biancalana, L.; Pampaloni, G.; Zacchini, S.; Marchetti, F., J. Organomet. Chem. 2018, 869, 201-211.
52. Binnani, C.; Rai, R. K.; Tyagi, D.; Mobin, S. M.; Singh, S. K., Eur. J. Inorg. Chem. 2018, 2018, 1435-1445.
53. Rahaman, S. M. W.; Daran, J.-C.; Manoury, E.; Poli, R., J. Organomet. Chem. 2017, 829, 14-21.
54. Prasad, K. T.; Therrien, B.; Rao, K. M., J. Organomet. Chem. 2008, 693, 3049-3056.
55. Camm, K. D.; El-Sokkary, A.; Gott, A. L.; Stockley, P. G.; Belyaeva, T.; McGowan, P. C., Dalton Trans. 2009, 10914-10925.
56. Ghosh, K.; Kumar, R.; Kumar, S.; Meena, J. S., Dalton Trans. 2013, 42, 13444-13452.
57. Salvatore, R. N.; Yoon, C. H.; Jung, K. W., Tetrahedron 2001, 57, 7785-7811.
58. Salvatore, R. N.; Nagle, A. S.; Jung, K. W., J. Org. Chem. 2002, 67, 674-683.
59. Andrews, K. G.; Summers, D. M.; Donnelly, L. J.; Denton, R. M., Chem. Commun. 2016, 52, 1855-1858.
60. Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J., J. Am. Chem. Soc. 2009, 131, 1766-1774.
61. Awasthi, M. K.; Singh, S. K., Inorg. Chem. 2019, 58, 14912-14923.
62. Bauri, S.; Donthireddy, S. N. R.; Illam, P. M.; Rit, A., Inorg. Chem. 2018, 57, 14582-14593.
63. Kanega, R.; Onishi, N.; Szalda, D. J.; Ertem, M. Z.; Muckerman, J. T.; Fujita, E.; Himeda, Y., ACS Catal. 2017, 7, 6426-6429.
64. Geukens, I.; Vermoortele, F.; Meledina, M.; Turner, S.; Van Tendeloo, G.; De Vos, D. E., Appl. Catal.,A 2014, 469, 373-379.
65. Dobereiner, G. E.; Crabtree, R. H., Chem. Rev. 2010, 110, 681-703.
66. Nikitas, N. F.; Tzaras, D. I.; Triandafillidi, I.; Kokotos, C. G., Green Chem. 2020, 22, 471-477.
67. Yiğit, B.; Özge Karaca, E.; Yiğit, M.; Gürbüz, N.; Arslan, H.; Özdemir, İ., Polyhedron 2020, 175, 114234.
68. Paul, B.; Chakrabarti, K.; Shee, S.; Maji, M.; Mishra, A.; Kundu, S., RSC Adv. 2016, 6, 100532-100545.
69. Lee, C.-C.; Chu, W.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Eur. J. Inorg. Chem. 2011, 2011, 4801-4806.
70. Feng, C.; Liu, Y.; Peng, S.; Shuai, Q.; Deng, G.; Li, C.-J., Org. Lett. 2010, 12, 4888-4891.
71. Tang, W.-H.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., J. Organomet. Chem. 2015, 775, 94-100.
72. Shee, S.; Panja, D.; Kundu, S., J. Org. Chem. 2020, 85, 2775-2784.
73. Shee, S.; Ganguli, K.; Jana, K.; Kundu, S., Chem. Commun. 2018, 54, 6883-6886.
74. Chakrabarti, K.; Maji, M.; Kundu, S., Green Chem. 2019, 21, 1999-2004.
75. Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X., Green Chem. 2015, 17, 279-284.
76. Chelucci, G.; Baldino, S.; Baratta, W., Coord. Chem. Rev. 2015, 300, 29-85.
77. Peralta-Cruz, J.; Díaz-Fernández, M.; Ávila-Castro, A.; Ortegón-Reyna, D.; Ariza-Castolo, A., New J. Chem 2016, 40, 5501-5515.
78. Xie, F.; Li, Y.; Chen, X.; Chen, L.; Zhu, Z.; Li, B.; Huang, Y.; Zhang, K.; Zhang, M., Chem. Commun. 2020, 56, 5997-6000.
79. Newkome, G. R.; Theriot, K. J.; Majestic, V. K.; Spruell, P. A.; Baker, G. R., J. Org. Chem. 1990, 55, 2838-2842.
80. Xi, Z.-W.; Yang, L.; Wang, D.-Y.; Pu, C.-D.; Shen, Y.-M.; Wu, C.-D.; Peng, X.-G., J. Org. Chem. 2018, 83, 11886-11895.
81. Das, K.; Nandi, P. G.; Islam, K.; Srivastava, H. K.; Kumar, A., Eur. J. Org. Chem. 2019, 2019, 6855-6866.
82. Zhang, Q.; Li, S.-S.; Zhu, M.-M.; Liu, Y.-M.; He, H.-Y.; Cao, Y., Green Chem. 2016, 18, 2507-2513.
83. Cho, A.; Byun, S.; Kim, B. M., Adv. Synth. Catal. 2018, 360, 1253-1261.
84. Zhang, Y.; Qi, X.; Cui, X.; Shi, F.; Deng, Y., Tetrahedron Lett. 2011, 52, 1334-1338.
85. Zhang, G.; Yin, Z.; Zheng, S., Org. Lett. 2016, 18, 300-303.
86. Wu, K.; He, W.; Sun, C.; Yu, Z., Tetrahedron 2016, 72, 8516-8521.
87. Gonzalez-Arellano, C.; Yoshida, K.; Luque, R.; Gai, P. L., Green Chem. 2010, 12, 1281-1287.
88. Das, K.; Mondal, A.; Pal, D.; Srivastava, H. K.; Srimani, D., Organometallics 2019, 38, 1815-1825.
89. Liu, P.; Liang, R.; Lu, L.; Yu, Z.; Li, F., J. Org. Chem. 2017, 82, 1943-1950.
90. Yu, Y.-J.; Zhang, F.-L.; Cheng, J.; Hei, J.-H.; Deng, W.-T.; Wang, Y.-F., Org. Lett. 2018, 20, 24-27.
91. Brindisi, M.; Brogi, S.; Maramai, S.; Grillo, A.; Borrelli, G.; Butini, S.; Novellino, E.; Allarà, M.; Ligresti, A.; Campiani, G.; Di Marzo, V.; Gemma, S., RSC Adv. 2016, 6, 64651-64664.
92. Leyva, S.; Castanedo, V. c.; Leyva, E., J. Fluor. Chem. 2003, 121, 171-175.
93. Kashif, M.; Moreno-Herrera, A.; Villalobos-Rocha, J. C.; Nogueda-Torres, B.; Pérez-Villanueva, J.; Rodríguez-Villar, K.; Medina-Franco, J. L.; De Andrade, P.; Carvalho, I.; Rivera, G., Molecules 2017, 22, 1863
94. Jaikhan, P.; Buranrat, B.; Itoh, Y.; Chotitumnavee, J.; Kurohara, T.; Suzuki, T., Bioorg. Med. Chem. Lett. 2019, 29, 1173-1176.
95. Antoine, M.; Czech, M.; Gerlach, M.; Günther, E.; Schuster, T.; Marchand, P., Synthesis 2011, 5, 794-806
96. Mondal, A.; Sahoo, M. K.; Subaramanian, M.; Balaraman, E., J. Org. Chem. 2020, 85, 7181-7191.
97. Paul, S.; Basu, B., Tetrahedron Lett. 2011, 52, 6597-6602.
98. Liu, T.; Wu, K.; Wang, L.; Yu, Z., Adv. Synth. Catal. 2019, 361, 3958-3964.
99. Go, A.; Lee, G.; Kim, J.; Bae, S.; Lee, B. M.; Kim, B. H., Tetrahedron 2015, 71, 1215-1226.
100. Chen, T.; Chen, X.; Wei, J.; Lin, D.; Xie, Y.; Zeng, W., Org. Lett. 2016, 18, 2078-2081.
101. Das, K.; Mondal, A.; Srimani, D., Chem. Commun. 2018, 54, 10582-10585.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60738-
dc.description.abstract本篇研究以萘啶羧酸衍生物配位基N-(pyridin-2-ylmethyl)-1,8-naphthyridine-2-carboxamide(L1)、1,8-naphthyridine-2-carboxamide(L2)、1,8-naphthyridine-2-carboxylic acid (L3) 及吡啶羧酸衍生物配位基N-(pyridin-2-ylmethyl)picolinamide (L4)、 picolinamide (L5),與picolinic acid (L6),與金屬前驅物RuHCl(CO)(PPh3)3及〔Ru(cymene)Cl2〕2分別進行錯合反應得到錯合物,包含雙牙配位的〔Ru(L1-3,5-6)H(CO)(PPh3)2〕(Ru1-3、7-8)、〔Ru(L2-3,5-6)(cymene)Cl〕(Ru4-5、9-10),及三牙配位的〔Ru(L1)(CO)(PPh3)Cl〕(Ru6)。
為了探討不同羧酸衍生物的配位基效應。首先進行苯胺與苯甲醇的N-烷基化催化反應,以叔丁醇鉀作為鹼,於無溶劑且氮氣環境加熱120°C進行。發現〔Ru(L)H(CO)(PPh3)2〕系列反應表現優於〔Ru(L)(cymene)Cl〕系列,且選擇性較佳。錯合物Ru1與Ru6,得到相似的反應結果,顯示錯合物Ru1原先之氫負離子對反應影響甚微。此外,錯合物Ru1之配位基L1其側基(Pendant)吡啶,可與中心金屬配位,穩定金屬中間體;也可能藉由氫鍵作用力引入反應物,促使反應順利進行。錯合物Ru2、7、4、9的選擇性優於對應之錯合物Ru3、8、5、10,是由於醯胺陰離子比羧酸根有更好的電子貢獻能力。最後,萘啶錯合物與對應之吡啶錯合物的反應性及選擇性相近,說明反應可能是藉由內層的反應機制進行。
於2-硝基苯胺與1,2-二醇環化加成催化反應,以碳酸銫作為鹼,以對二甲苯作為溶劑,於氮氣環境加熱120°C進行。錯合物Ru1、Ru6,得到相似且最佳的反應結果,再次顯示錯合物Ru1原先之氫負離子對反應影響甚微。而使用錯合物錯合物Ru2、Ru3時,僅得到微量產物,說明配位基L1其側基(Pendant)吡啶於此催化反應,扮演重要的穩定角色。若使用配位基L4、L7與金屬前驅物RuHCl(CO)(PPh3)3進行反應時,僅能得到少量產物,推測萘啶額外的吡啶可透過氫鍵作用力,引入雙官能基的雙醇反應物。〔Ru(L)(cymene)Cl〕系列,在此催化反應無法得到對應產物。
zh_TW
dc.description.abstractThree different naphthyridine carboxylic acid derivative ligands, 1 N-(pyridin-2-ylmethyl)-1,8-naphthyridine-2-carboxamide (L1)、1,8-naphthyridine-2-carboxamide (L2)、 1,8-naphthyridine-2-carboxylic acid (L3), and two pyridine carboxylic acid derivative ligands, N-(pyridin-2-ylmethyl)picolinamide (L4) 、picolinamide (L5) ,are synthesized. Complexation of [RuHCl(CO)(PPh3)3] and [Ru(cymene)Cl2]2,with L1-5 and picolinic acid (L6), provided the corresponding complexes, including bidentate complexes [Ru(L1-3,5-6)H(CO)(PPh3)2] (Ru1-3、7-8)、[Ru(L2-3,5-6)(cymene)Cl] (Ru4-5、9-10) and tridentate complex [Ru(L1)(CO)(PPh3)Cl] (Ru6).
In order to investigate the ligand effect, these complexes are applied to the catalytic N-alkylation of aniline with benzyl alcohol using potassium tert-butoxide as base under neat and nitrogen atmosphere at 120°C. The series of [Ru(L)H(CO)(PPh3)2] exhibit better catalytic activity and selectivity than the series of [Ru(L)(cymene)Cl]. The catalytic activity and selectivity of Complex Ru1 and Ru6 are similar, and the result show the influence of the hydride on the complex Ru1 is not apparent. Moreover, the pendant pyridine of ligand L1 can coordinate to the metal center during the reaction to stabilize the metal intermediate, and can also attract the reactant to the metal center using hydrogen bonding interaction. Complexes Ru2、Ru7、Ru4、Ru9 display higher selectivity than those of complexes Ru3、Ru8、Ru5、Ru10. The results are attributed to stronger electron donation of amido moiety than carboxylate moiety. In addition, the complexes using naphthyridine carboxylic acid derivative as ligand show similar catalytic activity and selectivity with those complexes with pyridine ligand. The observation implies the reaction might be inner sphere mechanism.
In the reaction of cycloaddition of 2-nitroaniline and 1,2-diol uses cesium carbonate as base under nitrogen atmosphere in para-xylene solvent at 120°C. It turns out that complexes Ru1 and Ru6 show the similar result and catalytic activity, implies the influence of the hydride on the complex Ru1 is negligible on the catalytic reaction. Using complex Ru2 and Ru3 as catalyst in this catalytic reaction, the yield is very low. The big different results between complex Ru1 and complex Ru2、 Ru3 show that pendant pyridine of ligand L1 plays an important role in this reaction which could coordinate to the metal center and stabilize the metal intermediate. However, using ligand L4、L7 and metal precursor [Ru(L)H(CO)(PPh3)2] as catalyst, giving low yield. The observation implies the additional pyridine on the naphthyridine ligand might attract bifunctional 1,2-diol reactant to the metal center with hydrogen bonding interaction. The series of [Ru(L)(cymene)Cl] are not effective catalysts in the cycloaddition reaction.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:28:07Z (GMT). No. of bitstreams: 1
U0001-0302202117431300.pdf: 16496539 bytes, checksum: f978f3642014b0bf9773767f2f2dd462 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VII
表目錄 X
流程目錄 XI
式目錄 XII
第壹章 緒論 1
第一節 金屬-配位基雙功能催化(Metal-Ligand Bifunctional Catalysis)簡介 1
第二節 RuHCl(CO)(PPh3)3的簡介與催化應用 3
第三節 氫轉移反應簡介 9
第四節 1,8-萘啶衍生物之配位基 11
第五節 研究動機 12
第貳章 配位基與釕金屬錯合物合成 13
第一節 配位基之合成 13
第二節 釕金屬錯合物合成 15
第三節 釕金屬錯合物之鑑定 21
2-3-1 釕金屬萘啶氫化物Ru1、Ru1´、Ru2及Ru3之鑑定 21
2-3-2 釕金屬錯合物Ru4、Ru5之鑑定 38
2-3-3 釕金屬三牙錯合物Ru6之鑑定 44
2-3-4 釕金屬吡啶錯合物Ru7、Ru8、Ru9之鑑定 50
第參章 釕金屬錯合物之催化應用 59
第一節 釕金屬錯合物催化苯胺與苯甲醇之N-烷基化反應 59
第二節 釕金屬錯合物催化2-硝基苯胺與1,2-二醇環化加成反應 70
第肆章 結論 86
第伍章 實驗部份 87
第一節 一般資訊 87
第二節 實驗儀器 88
第三節 實驗步驟 89
參考文獻 121
附錄壹 配位基與金屬錯合物光譜 129
附錄貳 化合物光譜 170
附錄參 錯合物晶體資料 214
dc.language.isozh-TW
dc.subject羧酸衍生物配位基zh_TW
dc.subjectN-烷基化反應zh_TW
dc.subject2-硝基苯胺 與 1zh_TW
dc.subject2-二醇環化加成反zh_TW
dc.subject釕金屬錯合物zh_TW
dc.subject吡啶羧酸衍生物配位基zh_TW
dc.subject2-diolen
dc.subjectPyridine Carboxylic Acid Derivatives Ligandsen
dc.subjectRuthenium Complexesen
dc.subjectN-alkylationen
dc.subjectCycloaddition of 2-nitroaniline and 1en
dc.subjectNaphthyridine Carboxylic Acid Derivatives Ligandsen
dc.title萘啶與吡啶羧酸衍生物配位基釕金屬錯合物之合成與催化應用zh_TW
dc.titleSynthesis and Catalytic Application of Ruthenium Complexes with Naphthyridine and Pyridine Carboxylic Acid Derivatives Ligandsen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee詹益慈(Yi-Tsu Chan),張慕傑(MU-CHIEH CHANG)
dc.subject.keyword羧酸衍生物配位基,吡啶羧酸衍生物配位基,釕金屬錯合物,N-烷基化反應,2-硝基苯胺 與 1,2-二醇環化加成反,zh_TW
dc.subject.keywordNaphthyridine Carboxylic Acid Derivatives Ligands,Pyridine Carboxylic Acid Derivatives Ligands,Ruthenium Complexes,N-alkylation,Cycloaddition of 2-nitroaniline and 1,2-diol,en
dc.relation.page234
dc.identifier.doi10.6342/NTU202100467
dc.rights.note有償授權
dc.date.accepted2021-02-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-0302202117431300.pdf
  未授權公開取用
16.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved