請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉緒宗(Shiuh-Tzung Liu) | |
| dc.contributor.author | Yen-Pin Hsu | en |
| dc.contributor.author | 許晏賓 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:28:07Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-04 | |
| dc.identifier.citation | 1. Khusnutdinova, J. R.; Milstein, D., Angew. Chem. Int. Ed. 2015, 54, 12236-12273. 2. Liu, Y.; Yue, X.; Luo, C.; Zhang, L.; Lei, M., EEM 2019, 2, 292-312. 3. Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R., J. Am. Chem. Soc. 1995, 117, 2675-2676. 4. Pandey, P.; Dutta, I.; Bera, J. K., Proc. Natl. Acad. Sci. India A 2016, 86, 561-579. 5. Montag, M.; Zhang, J.; Milstein, D., J. Am. Chem. Soc. 2012, 134, 10325-10328. 6. Gunanathan, C.; Milstein, D., Chem. Rev. 2014, 114, 12024-12087. 7. Hou, C.; Zhang, Z.; Zhao, C.; Ke, Z., Inorg. Chem. 2016, 55, 6539-6551. 8. Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K., Organometallics 2013, 32, 2046-2049. 9. Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K., ACS Catal. 2015, 5, 5468-5485. 10. Hale, L. V. A.; Malakar, T.; Tseng, K.-N. T.; Zimmerman, P. M.; Paul, A.; Szymczak, N. K., ACS Catal. 2016, 6, 4799-4813. 11. Fujita, K.-i.; Yoshida, T.; Imori, Y.; Yamaguchi, R., Org. Lett. 2011, 13, 2278-2281. 12. Vaska, L.; DiLuzio, J. W., J. Am. Chem. Soc. 1961, 83, 1262-1263. 13. Park, Y. J.; Huh, S.; Youm, K. T.; Jun, Y. J.; Jun, M. J., Bull. Korean Chem. Soc. 2000, 21, 939-942. 14. Sanchez-Delgado, R. A.; Rosales, M.; Andriollo, A., Inorg. Chem. 1991, 30, 1170-1173. 15. Zhang, L.; Raffa, G.; Nguyen, D. H.; Swesi, Y.; Corbel-Demailly, L.; Capet, F.; Trivelli, X.; Desset, S.; Paul, S.; Paul, J.-F.; Fongarland, P.; Dumeignil, F.; Gauvin, R. M., J. Catal. 2016, 340, 331-343. 16. Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.; Beller, M., Angew. Chem. Int. Ed. 2011, 50, 9593-9597. 17. Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D., J. Am. Chem. Soc. 2005, 127, 10840-10841. 18. Cho, D.; Ko, K. C.; Lee, J. Y., Organometallics 2013, 32, 4571-4576. 19. Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D., Nat. Chem 2013, 5, 122-125. 20. Sarbajna, A.; Dutta, I.; Daw, P.; Dinda, S.; Rahaman, S. M. W.; Sarkar, A.; Bera, J. K., ACS Catal. 2017, 7, 2786-2790. 21. Brewster, T. P.; Goldberg, J. M.; Tran, J. C.; Heinekey, D. M.; Goldberg, K. I., ACS Catal. 2016, 6, 6302-6305. 22. Tseng, K.-N. T.; Rizzi, A. M.; Szymczak, N. K., J. Am. Chem. Soc. 2013, 135, 16352-16355. 23. Gunanathan, C.; Hölscher, M.; Pan, F.; Leitner, W., J. Am. Chem. Soc. 2012, 134, 14349-14352. 24. Fogler, E.; Balaraman, E.; Ben-David, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D., Organometallics 2011, 30, 3826-3833. 25. Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T.; Song, D., Chem. Commun. 2011, 47, 8349-8351. 26. Roy, B. C.; Samim, S. A.; Panja, D.; Kundu, S., Catal. Sci. Technol. 2019, 9, 6002-6006. 27. Shi, J.; Hu, B.; Ren, P.; Shang, S.; Yang, X.; Chen, D., Organometallics 2018, 37, 2795-2806. 28. Roy, B. C.; Debnath, S.; Chakrabarti, K.; Paul, B.; Maji, M.; Kundu, S., Org. Chem. Front. 2018, 5, 1008-1018. 29. Zhang, C.; Zhao, J.-P.; Hu, B.; Shi, J.; Chen, D., Organometallics 2019, 38, 654-664. 30. Liu, T.; Guo, M.; Orthaber, A.; Lomoth, R.; Lundberg, M.; Ott, S.; Hammarström, L., Nat. Chem 2018, 10, 881-887. 31. Valencia, M.; Pereira, A.; Müller-Bunz, H.; Belderraín, T. R.; Pérez, P. J.; Albrecht, M., Chem. Eur. J. 2017, 23, 8901-8911. 32. Baráth, E., Catalysts 2018, 8, 671. 33. Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.; Brandt, P., Chem. Soc. Rev. 2006, 35, 237-248. 34. Enyong, A. B.; Moasser, B., J. Org. Chem. 2014, 79, 7553-7563. 35. Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R., Angew. Chem. Int. Ed. 1997, 36, 285-288. 36. Watson, A. J. A.; Williams, J. M. J., Science 2010, 329, 635-636. 37. Yang, S.-T.; Shen, P.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Organometallics 2017, 36, 3110-3116. 38. Cheng, T.-P.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Dalton Trans. 2012, 41, 3468-3473. 39. Chang, Y.-H.; Liu, Z.-Y.; Liu, Y.-H.; Peng, S.-M.; Chen, J.-T.; Liu, S.-T., Dalton Trans. 2011, 40, 489-494. 40. Roberts, M. P.; Nguyen, V.; Ashford, M. E.; Berghofer, P.; Wyatt, N. A.; Krause-Heuer, A. M.; Pham, T. Q.; Taylor, S. R.; Hogan, L.; Jiang, C. D.; Fraser, B. H.; Lengkeek, N. A.; Matesic, L.; Gregoire, M.-C.; Denoyer, D.; Hicks, R. J.; Katsifis, A.; Greguric, I., J. Med. Chem. 2015, 58, 6214-6224. 41. Huang, C.-Y.; Kuan, K.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Organometallics 2014, 33, 2831-2836. 42. Li, M.; Hsu, Y.-P.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., J. Organomet. Chem. 2020, 927, 121537. 43. Chen, P.-H.; Liu, Y.-H.; Liu, S.-T., J. Chin, Chem. Soc. 2019, 66, 972-981. 44. Hardy, E. E.; Wyss, K. M.; Eddy, M. A.; Gorden, A. E. V., Chem. Commun. 2017, 53, 5718-5720. 45. Rowland, J. M.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 2002, 41, 2754-2760. 46. Giancotti, G.; Cancellieri, M.; Balboni, A.; Giustiniano, M.; Novellino, E.; Delang, L.; Neyts, J.; Leyssen, P.; Brancale, A.; Bassetto, M., Eur. J. Med. Chem 2018, 149, 56-68. 47. Mete, T. B.; Singh, A.; Bhat, R. G., Tetrahedron Lett. 2017, 58, 4709-4712. 48. Prasanna, N.; Srinivasan, S.; Rajagopal, G.; Athappan, P. R., Indian. J. Chem. 2001, 40, 426-429. 49. Nag, S.; Butcher, R. J.; Bhattacharya, S., Eur. J. Inorg. Chem. 2007, 2007, 1251-1260. 50. Vijayan, P.; Yadav, S.; Yadav, S.; Gupta, R., Inorganica Chim. Acta. 2020, 502, 119285. 51. Biancalana, L.; Pampaloni, G.; Zacchini, S.; Marchetti, F., J. Organomet. Chem. 2018, 869, 201-211. 52. Binnani, C.; Rai, R. K.; Tyagi, D.; Mobin, S. M.; Singh, S. K., Eur. J. Inorg. Chem. 2018, 2018, 1435-1445. 53. Rahaman, S. M. W.; Daran, J.-C.; Manoury, E.; Poli, R., J. Organomet. Chem. 2017, 829, 14-21. 54. Prasad, K. T.; Therrien, B.; Rao, K. M., J. Organomet. Chem. 2008, 693, 3049-3056. 55. Camm, K. D.; El-Sokkary, A.; Gott, A. L.; Stockley, P. G.; Belyaeva, T.; McGowan, P. C., Dalton Trans. 2009, 10914-10925. 56. Ghosh, K.; Kumar, R.; Kumar, S.; Meena, J. S., Dalton Trans. 2013, 42, 13444-13452. 57. Salvatore, R. N.; Yoon, C. H.; Jung, K. W., Tetrahedron 2001, 57, 7785-7811. 58. Salvatore, R. N.; Nagle, A. S.; Jung, K. W., J. Org. Chem. 2002, 67, 674-683. 59. Andrews, K. G.; Summers, D. M.; Donnelly, L. J.; Denton, R. M., Chem. Commun. 2016, 52, 1855-1858. 60. Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J., J. Am. Chem. Soc. 2009, 131, 1766-1774. 61. Awasthi, M. K.; Singh, S. K., Inorg. Chem. 2019, 58, 14912-14923. 62. Bauri, S.; Donthireddy, S. N. R.; Illam, P. M.; Rit, A., Inorg. Chem. 2018, 57, 14582-14593. 63. Kanega, R.; Onishi, N.; Szalda, D. J.; Ertem, M. Z.; Muckerman, J. T.; Fujita, E.; Himeda, Y., ACS Catal. 2017, 7, 6426-6429. 64. Geukens, I.; Vermoortele, F.; Meledina, M.; Turner, S.; Van Tendeloo, G.; De Vos, D. E., Appl. Catal.,A 2014, 469, 373-379. 65. Dobereiner, G. E.; Crabtree, R. H., Chem. Rev. 2010, 110, 681-703. 66. Nikitas, N. F.; Tzaras, D. I.; Triandafillidi, I.; Kokotos, C. G., Green Chem. 2020, 22, 471-477. 67. Yiğit, B.; Özge Karaca, E.; Yiğit, M.; Gürbüz, N.; Arslan, H.; Özdemir, İ., Polyhedron 2020, 175, 114234. 68. Paul, B.; Chakrabarti, K.; Shee, S.; Maji, M.; Mishra, A.; Kundu, S., RSC Adv. 2016, 6, 100532-100545. 69. Lee, C.-C.; Chu, W.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Eur. J. Inorg. Chem. 2011, 2011, 4801-4806. 70. Feng, C.; Liu, Y.; Peng, S.; Shuai, Q.; Deng, G.; Li, C.-J., Org. Lett. 2010, 12, 4888-4891. 71. Tang, W.-H.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., J. Organomet. Chem. 2015, 775, 94-100. 72. Shee, S.; Panja, D.; Kundu, S., J. Org. Chem. 2020, 85, 2775-2784. 73. Shee, S.; Ganguli, K.; Jana, K.; Kundu, S., Chem. Commun. 2018, 54, 6883-6886. 74. Chakrabarti, K.; Maji, M.; Kundu, S., Green Chem. 2019, 21, 1999-2004. 75. Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X., Green Chem. 2015, 17, 279-284. 76. Chelucci, G.; Baldino, S.; Baratta, W., Coord. Chem. Rev. 2015, 300, 29-85. 77. Peralta-Cruz, J.; Díaz-Fernández, M.; Ávila-Castro, A.; Ortegón-Reyna, D.; Ariza-Castolo, A., New J. Chem 2016, 40, 5501-5515. 78. Xie, F.; Li, Y.; Chen, X.; Chen, L.; Zhu, Z.; Li, B.; Huang, Y.; Zhang, K.; Zhang, M., Chem. Commun. 2020, 56, 5997-6000. 79. Newkome, G. R.; Theriot, K. J.; Majestic, V. K.; Spruell, P. A.; Baker, G. R., J. Org. Chem. 1990, 55, 2838-2842. 80. Xi, Z.-W.; Yang, L.; Wang, D.-Y.; Pu, C.-D.; Shen, Y.-M.; Wu, C.-D.; Peng, X.-G., J. Org. Chem. 2018, 83, 11886-11895. 81. Das, K.; Nandi, P. G.; Islam, K.; Srivastava, H. K.; Kumar, A., Eur. J. Org. Chem. 2019, 2019, 6855-6866. 82. Zhang, Q.; Li, S.-S.; Zhu, M.-M.; Liu, Y.-M.; He, H.-Y.; Cao, Y., Green Chem. 2016, 18, 2507-2513. 83. Cho, A.; Byun, S.; Kim, B. M., Adv. Synth. Catal. 2018, 360, 1253-1261. 84. Zhang, Y.; Qi, X.; Cui, X.; Shi, F.; Deng, Y., Tetrahedron Lett. 2011, 52, 1334-1338. 85. Zhang, G.; Yin, Z.; Zheng, S., Org. Lett. 2016, 18, 300-303. 86. Wu, K.; He, W.; Sun, C.; Yu, Z., Tetrahedron 2016, 72, 8516-8521. 87. Gonzalez-Arellano, C.; Yoshida, K.; Luque, R.; Gai, P. L., Green Chem. 2010, 12, 1281-1287. 88. Das, K.; Mondal, A.; Pal, D.; Srivastava, H. K.; Srimani, D., Organometallics 2019, 38, 1815-1825. 89. Liu, P.; Liang, R.; Lu, L.; Yu, Z.; Li, F., J. Org. Chem. 2017, 82, 1943-1950. 90. Yu, Y.-J.; Zhang, F.-L.; Cheng, J.; Hei, J.-H.; Deng, W.-T.; Wang, Y.-F., Org. Lett. 2018, 20, 24-27. 91. Brindisi, M.; Brogi, S.; Maramai, S.; Grillo, A.; Borrelli, G.; Butini, S.; Novellino, E.; Allarà, M.; Ligresti, A.; Campiani, G.; Di Marzo, V.; Gemma, S., RSC Adv. 2016, 6, 64651-64664. 92. Leyva, S.; Castanedo, V. c.; Leyva, E., J. Fluor. Chem. 2003, 121, 171-175. 93. Kashif, M.; Moreno-Herrera, A.; Villalobos-Rocha, J. C.; Nogueda-Torres, B.; Pérez-Villanueva, J.; Rodríguez-Villar, K.; Medina-Franco, J. L.; De Andrade, P.; Carvalho, I.; Rivera, G., Molecules 2017, 22, 1863 94. Jaikhan, P.; Buranrat, B.; Itoh, Y.; Chotitumnavee, J.; Kurohara, T.; Suzuki, T., Bioorg. Med. Chem. Lett. 2019, 29, 1173-1176. 95. Antoine, M.; Czech, M.; Gerlach, M.; Günther, E.; Schuster, T.; Marchand, P., Synthesis 2011, 5, 794-806 96. Mondal, A.; Sahoo, M. K.; Subaramanian, M.; Balaraman, E., J. Org. Chem. 2020, 85, 7181-7191. 97. Paul, S.; Basu, B., Tetrahedron Lett. 2011, 52, 6597-6602. 98. Liu, T.; Wu, K.; Wang, L.; Yu, Z., Adv. Synth. Catal. 2019, 361, 3958-3964. 99. Go, A.; Lee, G.; Kim, J.; Bae, S.; Lee, B. M.; Kim, B. H., Tetrahedron 2015, 71, 1215-1226. 100. Chen, T.; Chen, X.; Wei, J.; Lin, D.; Xie, Y.; Zeng, W., Org. Lett. 2016, 18, 2078-2081. 101. Das, K.; Mondal, A.; Srimani, D., Chem. Commun. 2018, 54, 10582-10585. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60738 | - |
| dc.description.abstract | 本篇研究以萘啶羧酸衍生物配位基N-(pyridin-2-ylmethyl)-1,8-naphthyridine-2-carboxamide(L1)、1,8-naphthyridine-2-carboxamide(L2)、1,8-naphthyridine-2-carboxylic acid (L3) 及吡啶羧酸衍生物配位基N-(pyridin-2-ylmethyl)picolinamide (L4)、 picolinamide (L5),與picolinic acid (L6),與金屬前驅物RuHCl(CO)(PPh3)3及〔Ru(cymene)Cl2〕2分別進行錯合反應得到錯合物,包含雙牙配位的〔Ru(L1-3,5-6)H(CO)(PPh3)2〕(Ru1-3、7-8)、〔Ru(L2-3,5-6)(cymene)Cl〕(Ru4-5、9-10),及三牙配位的〔Ru(L1)(CO)(PPh3)Cl〕(Ru6)。 為了探討不同羧酸衍生物的配位基效應。首先進行苯胺與苯甲醇的N-烷基化催化反應,以叔丁醇鉀作為鹼,於無溶劑且氮氣環境加熱120°C進行。發現〔Ru(L)H(CO)(PPh3)2〕系列反應表現優於〔Ru(L)(cymene)Cl〕系列,且選擇性較佳。錯合物Ru1與Ru6,得到相似的反應結果,顯示錯合物Ru1原先之氫負離子對反應影響甚微。此外,錯合物Ru1之配位基L1其側基(Pendant)吡啶,可與中心金屬配位,穩定金屬中間體;也可能藉由氫鍵作用力引入反應物,促使反應順利進行。錯合物Ru2、7、4、9的選擇性優於對應之錯合物Ru3、8、5、10,是由於醯胺陰離子比羧酸根有更好的電子貢獻能力。最後,萘啶錯合物與對應之吡啶錯合物的反應性及選擇性相近,說明反應可能是藉由內層的反應機制進行。 於2-硝基苯胺與1,2-二醇環化加成催化反應,以碳酸銫作為鹼,以對二甲苯作為溶劑,於氮氣環境加熱120°C進行。錯合物Ru1、Ru6,得到相似且最佳的反應結果,再次顯示錯合物Ru1原先之氫負離子對反應影響甚微。而使用錯合物錯合物Ru2、Ru3時,僅得到微量產物,說明配位基L1其側基(Pendant)吡啶於此催化反應,扮演重要的穩定角色。若使用配位基L4、L7與金屬前驅物RuHCl(CO)(PPh3)3進行反應時,僅能得到少量產物,推測萘啶額外的吡啶可透過氫鍵作用力,引入雙官能基的雙醇反應物。〔Ru(L)(cymene)Cl〕系列,在此催化反應無法得到對應產物。 | zh_TW |
| dc.description.abstract | Three different naphthyridine carboxylic acid derivative ligands, 1 N-(pyridin-2-ylmethyl)-1,8-naphthyridine-2-carboxamide (L1)、1,8-naphthyridine-2-carboxamide (L2)、 1,8-naphthyridine-2-carboxylic acid (L3), and two pyridine carboxylic acid derivative ligands, N-(pyridin-2-ylmethyl)picolinamide (L4) 、picolinamide (L5) ,are synthesized. Complexation of [RuHCl(CO)(PPh3)3] and [Ru(cymene)Cl2]2,with L1-5 and picolinic acid (L6), provided the corresponding complexes, including bidentate complexes [Ru(L1-3,5-6)H(CO)(PPh3)2] (Ru1-3、7-8)、[Ru(L2-3,5-6)(cymene)Cl] (Ru4-5、9-10) and tridentate complex [Ru(L1)(CO)(PPh3)Cl] (Ru6). In order to investigate the ligand effect, these complexes are applied to the catalytic N-alkylation of aniline with benzyl alcohol using potassium tert-butoxide as base under neat and nitrogen atmosphere at 120°C. The series of [Ru(L)H(CO)(PPh3)2] exhibit better catalytic activity and selectivity than the series of [Ru(L)(cymene)Cl]. The catalytic activity and selectivity of Complex Ru1 and Ru6 are similar, and the result show the influence of the hydride on the complex Ru1 is not apparent. Moreover, the pendant pyridine of ligand L1 can coordinate to the metal center during the reaction to stabilize the metal intermediate, and can also attract the reactant to the metal center using hydrogen bonding interaction. Complexes Ru2、Ru7、Ru4、Ru9 display higher selectivity than those of complexes Ru3、Ru8、Ru5、Ru10. The results are attributed to stronger electron donation of amido moiety than carboxylate moiety. In addition, the complexes using naphthyridine carboxylic acid derivative as ligand show similar catalytic activity and selectivity with those complexes with pyridine ligand. The observation implies the reaction might be inner sphere mechanism. In the reaction of cycloaddition of 2-nitroaniline and 1,2-diol uses cesium carbonate as base under nitrogen atmosphere in para-xylene solvent at 120°C. It turns out that complexes Ru1 and Ru6 show the similar result and catalytic activity, implies the influence of the hydride on the complex Ru1 is negligible on the catalytic reaction. Using complex Ru2 and Ru3 as catalyst in this catalytic reaction, the yield is very low. The big different results between complex Ru1 and complex Ru2、 Ru3 show that pendant pyridine of ligand L1 plays an important role in this reaction which could coordinate to the metal center and stabilize the metal intermediate. However, using ligand L4、L7 and metal precursor [Ru(L)H(CO)(PPh3)2] as catalyst, giving low yield. The observation implies the additional pyridine on the naphthyridine ligand might attract bifunctional 1,2-diol reactant to the metal center with hydrogen bonding interaction. The series of [Ru(L)(cymene)Cl] are not effective catalysts in the cycloaddition reaction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:28:07Z (GMT). No. of bitstreams: 1 U0001-0302202117431300.pdf: 16496539 bytes, checksum: f978f3642014b0bf9773767f2f2dd462 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 中文摘要 II 英文摘要 III 目錄 V 圖目錄 VII 表目錄 X 流程目錄 XI 式目錄 XII 第壹章 緒論 1 第一節 金屬-配位基雙功能催化(Metal-Ligand Bifunctional Catalysis)簡介 1 第二節 RuHCl(CO)(PPh3)3的簡介與催化應用 3 第三節 氫轉移反應簡介 9 第四節 1,8-萘啶衍生物之配位基 11 第五節 研究動機 12 第貳章 配位基與釕金屬錯合物合成 13 第一節 配位基之合成 13 第二節 釕金屬錯合物合成 15 第三節 釕金屬錯合物之鑑定 21 2-3-1 釕金屬萘啶氫化物Ru1、Ru1´、Ru2及Ru3之鑑定 21 2-3-2 釕金屬錯合物Ru4、Ru5之鑑定 38 2-3-3 釕金屬三牙錯合物Ru6之鑑定 44 2-3-4 釕金屬吡啶錯合物Ru7、Ru8、Ru9之鑑定 50 第參章 釕金屬錯合物之催化應用 59 第一節 釕金屬錯合物催化苯胺與苯甲醇之N-烷基化反應 59 第二節 釕金屬錯合物催化2-硝基苯胺與1,2-二醇環化加成反應 70 第肆章 結論 86 第伍章 實驗部份 87 第一節 一般資訊 87 第二節 實驗儀器 88 第三節 實驗步驟 89 參考文獻 121 附錄壹 配位基與金屬錯合物光譜 129 附錄貳 化合物光譜 170 附錄參 錯合物晶體資料 214 | |
| dc.language.iso | zh-TW | |
| dc.subject | 羧酸衍生物配位基 | zh_TW |
| dc.subject | N-烷基化反應 | zh_TW |
| dc.subject | 2-硝基苯胺 與 1 | zh_TW |
| dc.subject | 2-二醇環化加成反 | zh_TW |
| dc.subject | 釕金屬錯合物 | zh_TW |
| dc.subject | 吡啶羧酸衍生物配位基 | zh_TW |
| dc.subject | 2-diol | en |
| dc.subject | Pyridine Carboxylic Acid Derivatives Ligands | en |
| dc.subject | Ruthenium Complexes | en |
| dc.subject | N-alkylation | en |
| dc.subject | Cycloaddition of 2-nitroaniline and 1 | en |
| dc.subject | Naphthyridine Carboxylic Acid Derivatives Ligands | en |
| dc.title | 萘啶與吡啶羧酸衍生物配位基釕金屬錯合物之合成與催化應用 | zh_TW |
| dc.title | Synthesis and Catalytic Application of Ruthenium Complexes with Naphthyridine and Pyridine Carboxylic Acid Derivatives Ligands | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹益慈(Yi-Tsu Chan),張慕傑(MU-CHIEH CHANG) | |
| dc.subject.keyword | 羧酸衍生物配位基,吡啶羧酸衍生物配位基,釕金屬錯合物,N-烷基化反應,2-硝基苯胺 與 1,2-二醇環化加成反, | zh_TW |
| dc.subject.keyword | Naphthyridine Carboxylic Acid Derivatives Ligands,Pyridine Carboxylic Acid Derivatives Ligands,Ruthenium Complexes,N-alkylation,Cycloaddition of 2-nitroaniline and 1,2-diol, | en |
| dc.relation.page | 234 | |
| dc.identifier.doi | 10.6342/NTU202100467 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0302202117431300.pdf 未授權公開取用 | 16.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
