請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60734完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周俊廷 | |
| dc.contributor.author | Yu-Chung Chen | en |
| dc.contributor.author | 陳煜中 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:27:57Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | [1] X. Fu, N. Zhang, A. Pingley, W. Yu, J. Wang, and W. Zhao, “The digital marauder’s map: A wifi forensic positioning tool,” Mobile Computing, IEEE Transactions on, vol. 11, no. 3, pp. 377–389, 2012.
[2] N. Patwari, J. Ash, S. Kyperountas, A. Hero, R. Moses, and N. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” Signal Processing Magazine, IEEE, vol. 22, no. 4, pp. 54–69, 2005. [3] K. Langendoen and N. Reijers, “Distributed localization in wireless sensor networks: a quantitative comparison,” Comput. Netw., vol. 43, pp. 499–518, Nov.2003. [4] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network localization techniques,” Comput. Netw., vol. 51, pp. 2529–2553, July 2007. [5] W. Chen, T. Mei, Q. Meng, H. Liang, Y. Liu, Y. Zhou, and L. Sun, “A localization algorithm based on discrete imprecision range measurement in wireless sensor networks,” in Information Acquisition, 2006 IEEE International Conference on, pp. 644–648, 2006. [6] K. Y. Foo and P. R. Atkins, “A relative-localization algorithm using incomplete pairwise distance measurements for underwater applications,” EURASIP J. Adv. Signal Process, vol. 2010, pp. 11:1–11:7, Jan. 2010. [7] W. Torgerson, Multidimensional scaling: I. Theory and method, vol. 17. Springer-Verlag, 1952. [8] W. Ni, W. Xiao, Y. K. Toh, and C. K. Tham, “Fingerprint-mds based algorithm for indoor wireless localization,” in Personal Indoor and Mobile Radio Communications (PIMRC), 2010 IEEE 21st International Symposium on, pp. 1972–1977,2010. [9] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization from mere connectivity,” in Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, MobiHoc ’03, (New York, NY, USA), pp. 201-212, ACM, 2003. [10] Y. Shang and W. Ruml, “Improved mds-based localization,” in INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, vol. 4, pp. 2640–2651 vol.4, 2004. [11] M. A. A. Cox and T. F. Cox, “Multidimensional scaling,” in Handbook of Data Visualization, Springer Handbooks Comp.Statistics, pp. 315–347, Springer Berlin Heidelberg, 2008. [12] Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz, “Sensor network localization, euclidean distance matrix completions, and graph realization,” in Proceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less environments, MELT ’08, (New York, NY, USA), pp. 129–134, ACM, 2008. [13] Q. Shi, C. He, H. Chen, and L. Jiang, “Distributed wireless sensor network localization via sequential greedy optimization algorithm,” Signal Processing, IEEE Transactions on, vol. 58, no. 6, pp. 3328–3340, 2010. [14] J. Luo and Q. Zhang, “Relative distance based localization for mobile sensor networks,” in Global Telecommunications Conference, 2007. GLOBECOM ’07. IEEE, pp. 1076–1080, 2007. [15] R. Luo and O. Chen, “Inference algorithm based wireless and pyroelectric sensory fusion system for indoor human/robot localization and monitoring,” in Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 5649-5654, 2011. [16] L. Lazos and R. Poovendran, “Serloc: secure range-independent localization for wireless sensor networks,” in Proceedings of the 3rd ACM workshop on Wireless security, WiSe ’04, (New York, NY, USA), pp. 21–30, ACM, 2004. [17] S. Zhang, J. Cao, L. Chen, and D. Chen, “On accuracy of region-based localization algorithms for wireless sensor networks,” in Mobile Adhoc and Sensor Systems, 2009. MASS ’09. IEEE 6th International Conference on, pp. 30–39, 2009. [18] R. Ouyang, A.-S. Wong, and K.-T. Woo, “Gps localization accuracy improvement by fusing terrestrial toa measurements,” in Communications (ICC), 2010 IEEE International Conference on, pp. 1–5, 2010. [19] L. Cong and W. Zhuang, “Hybrid tdoa/aoa mobile user location for wideband cdma cellular systems,” Wireless Communications, IEEE Transactions on, vol. 1, no. 3, pp. 439–447, 2002. [20] R. L. Moses, D. Krishnamurthy, and R. Patterson, “A self-localization method for wireless sensor networks,” EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, vol. 4, pp. 348–358, 2002. [21] L. Wang, X. Cai, W. Fan, and H. Zhang, “An improved method for multi-robot cooperative localization based on relative bearing,” in Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pp. 1862–1867, 2009. [22] A. Martinelli, F. Pont, and R. Siegwart, “Multi-robot localization using relative observations,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp. 2797–2802, 2005. [23] H. Wymeersch, J. Lien, and M. Win, “Cooperative localization in wireless networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009. [24] A. Ihler, J. Fisher, R. Moses, and A. Willsky, “Nonparametric belief propagation for self-localization of sensor networks,” Selected Areas in Communications, IEEE Journal on, vol. 23, no. 4, pp. 809–819, 2005. [25] P. Deng and P. Fan, “An aoa assisted toa positioning system,” in Communication Technology Proceedings, 2000. WCC - ICCT 2000. International Conference on, vol. 2, pp. 1501–1504 vol.2, 2000. [26] Y. Shen and M. Win, “Fundamental limits of wideband localization—part i: A general framework,” Information Theory, IEEE Transactions on, vol. 56, no. 10,pp. 4956–4980, 2010. [27] V. Ekambaram, K. Ramchandran, and R. Sengupta, “Scaling laws for cooperative node localization in non-line-of-sight wireless networks,” in Global Telecom-munications Conference (GLOBECOM 2011), 2011 IEEE, pp. 1–5, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60734 | - |
| dc.description.abstract | 智慧家庭並不是一個新的應用。實際上,在過去二十年間,已經有許多應用被設計並實作出來。然而,一直到目前為止,這樣子的應用並未被廣泛地進入到我們的生活中。其中一個很重要的障礙是,絕大多數智慧家庭系統都需要由專業工程師來做安裝及設定。或許在新建的大樓裡,建商可能會先將系統安裝佈建好,但實際上,即使建商這麼做了,經過一段時間之後,使用者的需求可能會因家庭成員變更等原因而有所改變。另一方面,使用電池作為電力來源的裝置也可能因為電池耗盡而需要做更換,此時,這些修改設定或是重新佈建新的裝置,對使用者來說都將是一件十分浪費時間以及成本高昂的事情。也因此,智慧家庭系統一直沒有辦法在推廣上有長足性的進展。
為了解決這樣的問題,在本篇論文中,我們提出了一個零配置系統(zero-configuration system)的架構。這個系統以自動拓樸重建機制(automatic topology reconstruction mechanism)作為特色之一。在該機制中,我們引入了多維度測距演算法(multidimentional scaling algorithm)來重建複數個裝置的拓樸。藉由拓樸的重建,使用者便能夠輕易地藉由我們設計的人機介面來做裝置的組態控制。此外,為了要消除在多維度測距演算法裡所隱含的旋轉及鏡射問題,我們提出了一個加強型的室內定位演算法來彌補現存之室內定位演算法之精準度不足的問題。此演算法藉由結合地理位置的資訊與距離的資訊來達到提升精準度的目的。透過數值分析的方式可以發現,我們的演算法能夠在最小均方差(minimum mean square error)此一比較基準下提供給現存之室內定位演算法最高80%的加強幅度。 | zh_TW |
| dc.description.abstract | Smart house is not a new research topic. In fact, this topic have been discussed for the past two decades while various applications have been proposed and implemented.
However, until now, mass adoption of smart-house applications has not yet happened. One of the main obstacles is that the existing smart houses require professional installation, configuration, and maintenance. Professional installation is not an issue for newly-built houses since devices may be installed and configured by the contractor in advance. However, users' preferences and demands may vary with time due to the change of family composition. Moreover, battery devices such as sensors eventually will run out of power or become malfunctioned so that replacement or rewiring is unavoidable. This process is usually time-consuming and expensive, and impedes the sustainable growth of smart house. In order to solve the problem, a zero-configuration system is proposed in this thesis. The system features an automatic topology reconstruction mechanism. A multidimensional scaling (MDS) algorithm is adopted for implementing the topology reconstruction mechanism. With the reconstructed devices' topology, users are then able to recognize and configure their devices via an intuitive human-machine interface (HMI). To eliminate the mirror and rotation effects introduced by the MDS algorithm, an enhanced indoor localization scheme is also proposed. This localization scheme fuses the geo-coordinates information and distance information to provide more accurate position estimation. Through the numerical analysis, we have shown that the enhanced indoor localization scheme can provide up to 80% improvement on the minimum mean square error (MMSE). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:27:57Z (GMT). No. of bitstreams: 1 ntu-102-R00942038-1.pdf: 3282735 bytes, checksum: c88182164895a17b2261fc980518ed7b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | ABSTRACT......................ii
LIST OF TABLES................v LIST OF FIGURES...............vi CHAPTER 1 INTRODUCTION........1 1.1 Smart house systems.......1 1.2 Related Work..............3 1.3 Topology Reconstruction and Enhanced Localization Scheme ..............................10 1.4 Organization of Thesis....11 CHAPTER 2 IMPLEMENTATION OF TOPOLOGY RECONSTRUC- TION MECHANISM................12 2.1 Introduction of the Test Bed......12 2.1.1 The Framework of the Test Bed...12 2.1.2 ZigBee Endpoints................13 2.2 The Implementation of Topology Reconstruction Mechanism ......................................15 2.2.1 The Topology Reconstruction Mechanism ......................................16 2.2.2 The Novel Human-Machine Interface..........20 CHAPTER 3 ENHANCED INDOOR LOCALIZATION SCHEME....23 3.1 A case study: Google localization service....23 3.2 Mathematical Modeling........................25 3.2.1 Special case: V ar(r ij ) = 0..............27 3.2.2 General cases: V ar(r ij ) 6= 0............33 3.2.3 Numerical Analysis.........................36 3.2.4 Cooperation Among Multiple Devices.........38 CHAPTER 4 CONCLUSIONS............................44 | |
| dc.language.iso | en | |
| dc.subject | 零配置系統 | zh_TW |
| dc.subject | 多維度測距演算法 | zh_TW |
| dc.subject | 室內定位 | zh_TW |
| dc.subject | 智慧家庭 | zh_TW |
| dc.subject | 拓樸 | zh_TW |
| dc.subject | smart house | en |
| dc.subject | zero-configuration system | en |
| dc.subject | topology | en |
| dc.subject | multidimensional scaling algorithm | en |
| dc.subject | indoor localization | en |
| dc.title | 分散式定位於智慧家庭系統中的實作及應用 | zh_TW |
| dc.title | Distributed Localization: Implementation and Application in Smart House Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 逄愛君,曾煜棋,王傑智 | |
| dc.subject.keyword | 智慧家庭,零配置系統,拓樸,多維度測距演算法,室內定位, | zh_TW |
| dc.subject.keyword | smart house,zero-configuration system,topology,multidimensional scaling algorithm,indoor localization, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
