Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60730
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡詩偉
dc.contributor.authorHeng-Yu Changen
dc.contributor.author張恆瑜zh_TW
dc.date.accessioned2021-06-16T10:27:47Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation1. Villanueva, C.M., Cantor, K.P., Grimalt, J.O., Castano-Vinyals, G., Malats, N., Silverman, D., Tardon, A., Garcia-Closas, R., Serra, C., Carrato, A., Rothman, N., Real, F.X., Dosemeci, M., and Kogevinas, M., Assessment of lifetime exposure to trihalomethanes through different routes. Occupational and Environmental Medicine, 2006. 63(4): p. 273-277.
2. Mallika, P., Sarisak, S., and Pongsri, P., Cancer risk assessment from exposure to trihalomethanes in tap water and swimming pool water. Journal of Environmental Sciences-China, 2008. 20(3): p. 372-378.
3. Chen, M.J., Lin, C.H., Duh, J.M., Chou, W.S., and Hsu, H.T., Development of a multi-pathway probabilistic health risk assessment model for swimmers exposed to chloroform in indoor swimming pools. Journal of Hazardous Materials, 2011. 185(2-3): p. 1037-1044.
4. Voisin, C., Sardella, A., Marcucci, F., and Bernard, A., Infant swimming in chlorinated pools and the risks of bronchiolitis, asthma and allergy. European Respiratory Journal, 2010. 36(1): p. 41-47.
5. Bernard, A., Carbonnelle, S., Michel, O., Higuet, S., de Burbure, C., Buchet, J.P., Hermans, C., Dumont, X., and Doyle, I., Lung hyperpermeability and asthma prevalence in schoolchildren: unexpected associations with the attendance at indoor chlorinated swimming pools. Occupational and Environmental Medicine, 2003. 60(6): p. 385-394.
6. Dang, B., Chen, L.L., Mueller, C., Dunn, K.H., Almaguer, D., Roberts, J.L., and Otto, C.S., Ocular and Respiratory Symptoms Among Lifeguards at a Hotel Indoor Waterpark Resort. Journal of Occupational and Environmental Medicine, 2010. 52(2): p. 207-213.
7. Fantuzzi, G., Righi, E., Predieri, G., Giacobazzi, P., Mastroianni, K., and Aggazzotti, G., Prevalence of Ocular, Respiratory and Cutaneous Symptoms in Indoor Swimming Pool Workers and Exposure to Disinfection By-Products (DBPs). International Journal of Environmental Research and Public Health, 2010. 7(4): p. 1379-1391.
8. Basden, K., Swimming pool and spa pool atmospheres. Clean Air and Environmental Quality, 2006. 40(2).
9. OSHA chemical sampling information, Chemical sampling information: Nitrogen Trichloride. 2007.
10. Holzwarth, G., Balmer, R.G., and Soni, L., The Fate of Chlorine and Chloramines in Cooling-Towers - Henrys Law Constants for Flashoff. Water Research, 1984. 18(11): p. 1421-1427.
11. Hery, M., Hecht, G., Gerber, J.M., Gendre, J.C., Hubert, G., and Rebuffaud, J., Exposure to Chloramines in the Atmosphere of Indoor Swimming Pools. Annals of Occupational Hygiene, 1995. 39(4): p. 427-439.
12. Barbee, S.J., Thackara, J.W., and Rinehart, W.E., Acute Inhalation Toxicology of Nitrogen Trichloride. American Industrial Hygiene Association Journal, 1983. 44(2): p. 145-146.
13. Gagnaire, F., Azim, S., Bonnet, P., Hecht, G., and Hery, M., Comparison of the Sensory Irritation Response in Mice to Chlorine and Nitrogen Trichloride. Journal of Applied Toxicology, 1994. 14(6): p. 405-409.
14. Massin, N., Bohadana, A.B., Wild, P., Hery, M., Toamain, J., and Hubert, G., Respiratory symptoms and bronchial responsiveness in lifeguards exposed to nitrogen trichloride in indoor swimming pools. Occupational and Environmental Medicine, 1998. 55(4): p. 258-263.
15. Hermans, C. and Bernard, A., Lung epithelium-specific proteins - Characteristics and potential applications as markers. American Journal of Respiratory and Critical Care Medicine, 1999. 159(2): p. 646-678.
16. Hermans, C. and Bernard, A., Pneumoproteinaemia: a new perspective in the assessment of lung disorders. European Respiratory Journal, 1998. 11(4): p. 801-803.
17. Bernard, A., Carbonnelle, S., de Burbure, C., Michel, O., and Nickmilder, M., Chlorinated pool attendance, atopy, and the risk of asthma during childhood. Environmental Health Perspectives, 2006. 114(10): p. 1567-1573.
18. Parrat, J., Donze, G., Iseli, C., Perret, D., Tomicic, C., and Schenk, O., Assessment of Occupational and Public Exposure to Trichloramine in Swiss Indoor Swimming Pools: A Proposal for an Occupational Exposure Limit. Annals of Occupational Hygiene, 2012. 56(3): p. 264-277.
19. Schmalz, C., Wunderlich, H.G., Heinze, R., Frimmel, F.H., Zwiener, C., and Grummt, T., Application of an optimized system for the well-defined exposure of human lung cells to trichloramine and indoor pool air. Journal of Water and Health, 2011. 9(3): p. 586-596.
20. Jacobs, J.H., Spaan, S., van Rooy, G.B.G.J., Meliefste, C., Zaat, V.A.C., Rooyackers, J.M., and Heederik, D., Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers. European Respiratory Journal, 2007. 29(4): p. 690-698.
21. 朱采菽, 蔡., 鄭淑芳, 室內游泳池勞工暴露於空氣中三氯胺之初探. IOSH99-A318, 行政院勞工安全衛生研究所, 2011.
22. Richardson, S.D., DeMarini, D.M., Kogevinas, M., Fernandez, P., Marco, E., Lourencetti, C., Balleste, C., Heederik, D., Meliefste, K., McKague, A.B., Marcos, R., Font-Ribera, L., Grimalt, J.O., and Villanueva, C.M., What's in the Pool? A Comprehensive Identification of Disinfection By-products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water. Environmental Health Perspectives, 2010. 118(11): p. 1523-1530.
23. WHO, Guidelines for Safe Recreational-Water Environments, Swimming Pools, Spas and Similar Recreational-Water Environments, Geneva, World Health Organization Press, . 2006.
24. International Programme on Chemical Safety (IPCS) under the joint sponsorship of the United Nations Environment Programme, Environmental Health Criteria 163: Chloroform. 1994.
25. Bowman FJ, B.J., Munson AE, The toxicity of some halomethanes in mice. Toxicol Appl Pharmacol., 1978. 44: p. 3.
26. Aida Y, T.K., Uchida O, Yasuhara K, Kurokawa Y, Tobe M., Toxicities of microencapsulated tribromomethane, dibromochloromethane and bromodichloromethane administered in the diet to Wistar rats for one month. J Toxicol Sci. , 1992. 17(3): p. 15.
27. United States Environmental protection Agency
28. Chai, M. and Pawliszyn, J., Analysis of Environmental Air Samples by Solid-Phase Microextraction and Gas-Chromatography Ion-Trap Mass-Spectrometry. Environmental Science & Technology, 1995. 29(3): p. 693-701.
29. Sa, C.S.A., Boaventura, R.A.R., and Pereira, I.B., Analysis of trihalomethanes in water and air from indoor swimming pools using HS-SPME/GC/ECD. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2011. 46(4): p. 355-363.
30. World Health Organization, Concise International Chemical Assessment Document 58, chloroform.
31. Aggazzotti, G., Fantuzzi, G., Righi, E., and Predieri, G., Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools. Science of the Total Environment, 1998. 217(1-2): p. 155-163.
32. Hsu, H.T., Chen, M.J., Lin, C.H., Chou, W.S., and Chen, J.H., Chloroform in indoor swimming-pool air: Monitoring and modeling coupled with the effects of environmental conditions and occupant activities. Water Research, 2009. 43(15): p. 3693-3704.
33. Arthur, C.L. and Pawliszyn, J., Solid-Phase Microextraction with Thermal-Desorption Using Fused-Silica Optical Fibers. Analytical Chemistry, 1990. 62(19): p. 2145-2148.
34. Fuller, E.N., Schettle.Pd, and Giddings, J.C., A New Method for Prediction of Binary Gas-Phase Diffusion Coeffecients. Industrial and Engineering Chemistry, 1966. 58(5): p. 19-&.
35. Liu, H.-J., Sampling trichloramine in air by solid-phase microextraction under nonequilibrium condition. in institute of Environmental Health, NTU, 2012.
36. C Shang, E.B., Differentiation and Quantification of Free Chlorine and Inorganic Chloramines in Aqueous Solution by MIMS. Environ. Sci. Technol., 1999. 33: p. 6.
37. EPA method 4500-Cl F Standard methods for the examination of water and waste water 20th edition. 1999.
38. Hery, M., Gerber, J.M., Hecht, G., Subra, I., Possoz, C., Aubert, S., Dieudonne, M., and Andre, J.C., Exposure to chloramines in a green salad processing plant. Annals of Occupational Hygiene, 1998. 42(7): p. 437-451.
39. CJO Childress, W.F., BF Connor, TJ Maloney, New Reporting Procedures Based on Long-Term Method Detection Levels and Some Considerations for Interpretations of Water-Quality Data Provided by the U.S. Geological Survey National Water Quality Laboratory. U.S. GEOLOGICAL SURVEY, 1999: p. 95.
40. NIOSH, method 1003. NIOSH Manual of Analytical Methods (NMAM),Fourth Edition, (3).
41. Koziel, J., Jia, M.Y., and Pawliszyn, J., Air sampling with porous solid-phase microextraction fibers. Analytical Chemistry, 2000. 72(21): p. 5178-5186.
42. Tuduri, L., Desauziers, V., and Fanlo, J.L., Potential of solid-phase microextraction fibers for the analysis of volatile organic compounds in air. Journal of Chromatographic Science, 2001. 39(12): p. 521-529.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60730-
dc.description.abstract游泳池是許多人會去運動和休閒的地方,但是在經過加氯消毒之後,水中餘氯會和人體帶進去的含氮物質結合生成消毒副產物。由於文獻指出,長期在室內泳池中活動的人容易罹患上呼吸道疾病,空氣中的消毒副產物的暴露評估因此也變得重要。
根據文獻資料和物質特性,本研究選定泳池空氣中較常見的三鹵甲烷(氯仿、二氯一溴甲烷、一氯二溴甲烷、溴仿)以及三氯胺作為目標化學物質,而由於目前的測定方法較為繁瑣,兩類物質無法同時測定,必須使用不同的採樣器並搭配不同的採樣方法與分析儀器,樣品前處理過程也相當繁瑣,因此本研究的目的為開發以固相微萃取搭配動態系統的快速空氣採樣與分析方法,目前並無任何其他研究使用固相微萃取與質譜儀來分析空氣中之三氯胺,而藉由固相微萃取的優點和特性,空氣中之三鹵甲烷也可以一同採集,以一個簡單的方法省去繁瑣的樣品前處理步驟來同時測定泳池空氣中之三鹵甲烷與三氯胺,將是本研究之最大突破。
本研究經配置好一定濃度之三鹵甲烷與三氯胺溶液後,利用注射幫浦分別將兩類物質帶入動態系統分流並以高溫汽化,三氯胺的路線途中則以純水與氨基磺酸進一步純化,在進入暴露腔前將兩類物質匯流,以固相微萃取之纖維在暴露腔內進行採樣,暴露過程三鹵甲烷的濃度固定為0.01mg/m3,三氯胺的濃度固定為5mg/m3,並以23、30、37、45、52與60分鐘分別進行暴露測試。
。本研究藉由暴露時間的不同變化獲得每個物質之實驗採樣率;方法開發完成後,則進一步到泳池中進行實地採樣並與傳統方法進行平行比對,藉以驗證本研究所建立方法之可信度,該泳池為一室內游泳池,採樣地點選在泳池某測的地板上,按照各方法的要求與條件進行90分鐘之採樣。。
利用本研究所建立的動態採樣系統,發現氯仿的實驗採樣率為9.17×10-1 cm3/sec;二氯一溴甲烷為1.31 cm3/sec;一氯二溴甲烷為1.58 cm3/sec;溴仿為1.35 cm3/sec;三氯胺為9.4×10-1 cm3/sec。實地採樣結果顯示傳統方法無法測得泳池空氣中之dichlorobromomethane、dibromochloromethane以及bromoform,但相較之下,本研究所開發之方法可以偵測到dichlorobromomethane及dibromochloromethane,顯示出本研究的敏感度高於傳統方法。將泳池採樣結果與實驗室內模擬結果平行比對兩類方法,chloroform所得到的數值進行迴歸分析,可得到係數為0.91,R2為0.95之關係。另一方面,於三氯胺的部分,本研究所開發之方法和傳統方法可以得到係數為0.93,R2為0.90的迴歸線,顯示出本研究所開發方法和舊的傳統方法所測得的環境濃度有相當程度的一致性。
本研究所開發之方法可同時測量空氣中之三鹵甲烷與三氯胺,相較於傳統方法也有較高的敏感度,也簡化了檢測的繁瑣流程,提供更好的方法來測量泳池空氣中之消毒副產物。
zh_TW
dc.description.abstractSwimming pool is a popular place for many people. During the process of disinfection for pool water, chlorine will react with nitrogenous compound and organic matter brought by human to form by-products. Many studies point out the attendance of indoor swimming pool has relation with the occurrence of upper respiratory symptom. Hence, the airborne disinfection by-products (DBPs) in the indoor swimming pool cause concerns.
Considering the occurrences and characteristics, the DBPs including trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, bromoform) and trichloramine were the compounds of interests for current research. In addition, there is a need to assess the associated airborne concentrations. However, the traditional procedures to determine these DBPs in air were complicated. In addition, no study has been using solid-phase microextraction (SPME) with gas chromatography/mass spectrometer (GC/MS) to determine NCl3 and THMs simultaneously. Hence, this study aimed to develop a sampling and analysis method by using SPME with dynamic exposure system.
For method validation, standard solutions of trichloramine and trihalomethanes were first prepared, and were injected into the dynamic generation system for vaporization and exposure afterwards. Besides, field validation at an indoor swimming pool was performed by sampling NCl3 and THMs side-by-side with SPME method as well as traditional methods.
It was found that the experimental sampling rates for chloroform, bromodichloromethane, dibromochloromethane, bromoform and trichloramine were 9.17×10-1 cm3/sec, 1.31 cm3/sec, 1.58 cm3/sec, 1.35 cm3/sec and 9.4×10-1 cm3/sec, respectively. The results from field sampling were consistent between traditional method and SPME method for THMs (the coefficient was 0.91 and R2 was 0.948), while the latter provided better sensitivity. In the part of trichloramine, the regression of two method showed the coefficient was 0.93 and R2 was 0.9. These result showed that the method we developed had similar result to traditional methods and can be reliable.
The method developed in this study can be used to determine the airborne THMs and NCl3 simultaneously. Compare with traditional methods, the SPME technique has simplified the procedure with higher sensitivity. It can provide a better tool to assess the air quality in indoor swimming pools.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:27:47Z (GMT). No. of bitstreams: 1
ntu-102-R00844002-1.pdf: 1109564 bytes, checksum: 4a4feaaba0c91e11ec5593c3311dc4f4 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents
中文摘要 I
Abstract IV
Contents VII
Figure Contents VIII
Table Contents IX
1.1. Disinfection By-products 1
1.2. Trichloramine (NCl3) 2
Formation 2
Physical and Chemical properties 3
Toxicity and health effect 3
Concentrations in indoor swimming pools 4
Guideline 4
1.3. Trihalomethanes (THMs) 5
Physical and Chemical properties 5
Toxicity and health effect 5
Concentrations in indoor swimming pools 6
Exposure assessment 6
1.4. SPME 8
Dynamic exposure system 8
Chapter 2. Research Objective and Structure 10
2.1. Research Objective 10
2.2. Research structure 11
Chapter 3. Methods and Materials 12
3.1. Instruments and Reagents 12
3.2. Instrumental analysis 14
3.3. Dynamic exposure system 15
3.4. Theoretical sampling rate 17
3.5. Method Detection limit (MDL) 18
3.6. Standard method for trihalomethanes 19
3.7. Traditional method for the sampling of trichloramine 20
Chapter 4. Results and Discussions 21
4.1. Experimental sampling rate 23
4.2. Field sampling and method comparison 26
Chapter 5. Conclusion 28
References 29
dc.language.isoen
dc.title以固相微萃取技術搭配動態非平衡暴露系統進行泳池空氣中消毒副產物採樣之方法開發zh_TW
dc.titleSampling Airborne Disinfection By-products At Indoor Swimming Pool By Solid-Phase Microextraction Under Nonequilibrium Conditionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明,陳美蓮
dc.subject.keyword消毒副產物,氯仿,二氯一溴甲烷,二溴一氯甲烷,溴仿,三氯胺,固相微萃取,zh_TW
dc.subject.keyworddisinfection by-products,chloroform,bromodichloromethane,dibromochloromethane,bromoform,trichloramine,solid-phase microextraction,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved