Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60724
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林琬琬
dc.contributor.authorYi-Fen Chenen
dc.contributor.author陳儀芬zh_TW
dc.date.accessioned2021-06-16T10:27:33Z-
dc.date.available2023-09-01
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citationAbram, C.L., and Lowell, C.A. (2008). The diverse functions of Src family kinases in macrophages. Front Biosci 13, 4426-4450.
Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511.
Anand, P.K., Malireddi, R.K., and Kanneganti, T.D. (2011). Role of the nlrp3 inflammasome in microbial infection. Front Microbiol 2, 12.
Avila, M., Martinez-Juarez, A., Ibarra-Sanchez, A., and Gonzalez-Espinosa, C. (2012). Lyn kinase controls TLR4-dependent IKK and MAPK activation modulating the activity of TRAF-6/TAK-1 protein complex in mast cells. Innate Immunol 18, 648-660.
Baroja-Mazo, A., Barbera-Cremades, M., and Pelegrin, P. (2013). The participation of plasma membrane hemichannels to purinergic signaling. Biochim Biophys Acta 1828, 79-93.
Bauernfeind, F., and Hornung, V. (2013). Of inflammasomes and pathogens-sensing of microbes by the inflammasome. EMBO Mol Med 5, 814-826.
Beavitt, S.J., Harder, K.W., Kemp, J.M., Jones, J., Quilici, C., Casagranda, F., Lam, E., Turner, D., Brennan, S., Sly, P.D., et al. (2005). Lyn-deficient mice develop severe, persistent asthma: Lyn is a critical negative regulator of Th2 immunity. J Immunol 175, 1867-1875.
Blobel, G. (2000). Protein targeting (Nobel lecture). Chembiochem 1, 87-102.
Brown, M.T., and Cooper, J.A. (1996). Regulation, substrates and functions of src. Biochim Biophys Acta 1287, 121-149.
Broz, P., Newton, K., Lamkanfi, M., Mariathasan, S., Dixit, V.M., and Monack, D.M. (2010). Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207, 1745-1755.
Bruchard, M., Mignot, G., Derangere, V., Chalmin, F., Chevriaux, A., Vegran, F., Boireau, W., Simon, B., Ryffel, B., Connat, J.L., et al. (2013). Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19, 57-64.
Bryant, C., and Fitzgerald, K.A. (2009). Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19, 455-464.
Burnstock, G. (2006). Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27, 166-176.
Cassel, S.L., Joly, S., and Sutterwala, F.S. (2009). The NLRP3 inflammasome: A sensor of immune danger signals. Semin Immunol 21, 194-198.
Cheng, S.C., van de Veerdonk, F.L., Lenardon, M., Stoffels, M., Plantinga, T., Smeekens, S., Rizzetto, L., Mukaremera, L., Preechasuth, K., Cavalieri, D., et al. (2011). The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leuko Biol 90, 357-366.
Cheung, R., Malik, M., Ravyn, V., Tomkowicz, B., Ptasznik, A., and Collman, R.G. (2009). An arrestin-dependent multi-kinase signaling complex mediates MIP-1 beta/CCL4 signaling and chemotaxis of primary human macrophages. J Leuko Biol 86, 833-845.
Colognato, H., Ramachandrappa, S., Olsen, I.M., and ffrench-Constant, C. (2004). Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development. J Cell Biol 167, 365-375.
Craven, R.R., Gao, X., Allen, I.C., Gris, D., Wardenburg, J.B., McElvania-TeKippe, E., Ting, J.P., and Duncan, J.A. (2009). Staphylococcus aureus alpha-Hemolysin Activates the NLRP3-Inflammasome in Human and Mouse Monocytic Cells. Plos One 4. e7446.
Cunha, C., Carvalho, A., Esposito, A., Bistoni, F., and Romani, L. (2012). DAMP signaling in fungal infections and diseases. Front Immunol 3, 286.
De Nardo, D., and Latz, E. (2011). NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 32, 373-379.
Dhimolea, E. (2010). Canakinumab. Mabs 2, 3-13.
Dinarello, C.A. (2010). IL-1:discoveries, controversies and future directions. Eur J Immunol 40, 599-606.
Dinarello, C.A. (2011). A clinical perspective of IL-1 beta as the gatekeeper of inflammation. Eu J Immunol 41, 1203-1217.
Du, C., and Calderone, R.A. (2009). Phagocytosis and killing assays for Candida species. Methods Mol Biol 499, 17-26.
Falanga, Y.T., Chaimowitz, N.S., Charles, N., Finkelman, F.D., Pullen, N.A., Barbour, S., Dholaria, K., Faber, T., Kolawole, M., Huang, B., et al. (2012). Lyn but not Fyn kinase controls IgG-mediated systemic anaphylaxis. J Immunol 188, 4360-4368.
Forrester, M.T., Seth, D., Hausladen, A., Eyler, C.E., Foster, M.W., Matsumoto, A., Benhar, M., Marshall, H.E., and Stamler, J.S. (2009). Thioredoxin-interacting Protein (Txnip) Is a Feedback Regulator of S-Nitrosylation. J Biol Chem 284, 36160-36166.
Futami, M., Zhu, Q.S., Whichard, Z.L., Xia, L., Ke, Y.H., Neel, B.G., Feng, G.S., and Corey, S.J. (2011). G-CSF receptor activation of the Src kinase Lyn is mediated by Gab2 recruitment of the Shp2 phosphatase. Blood 118, 1077-1086.
Gantner, B.N., Simmons, R.M., and Underhill, D.M. (2005). Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24, 1277-1286.
Garcia-Marcos, M., Fontanils, U., Aguirre, A., Pochet, S., Dehaye, J.P., and Marino, A. (2005). Role of sodium in mitochondrial membrane depolarization induced by P2X(7) receptor activation in submandibular glands. FEBS Lett 579, 5407-5413.
Geddes, K., Magalhaes, J.G., and Girardin, S.E. (2009). Unleashing the therapeutic potential of NOD-like receptors. NatRev Drug Discov 8, 465-479.
Gray, P., Dagvadorj, J., Michelsen, K.S., Brikos, C., Rentsendorj, A., Town, T., Crother, T.R., and Arditi, M. (2011). Myeloid differentiation factor-2 interacts with Lyn kinase and is tyrosine phosphorylated following lipopolysaccharide-induced activation of the TLR4 signaling pathway. J Immunol 187, 4331-4337.
Gross, O., Poeck, H., Bscheider, M., Dostert, C., Hannesschlager, N., Endres, S., Hartmann, G., Tardivel, A., Schweighoffer, E., Tybulewicz, V., et al. (2009). Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433-U149.
Hibbs, M.L., and Harder, K.W. (2006). The duplicitous nature of the Lyn tyrosine kinase in growth factor signaling. Growth Factors 24, 137-149.
Hise, A.G., Tomalka, J., Ganesan, S., Patel, K., Hall, B.A., Brown, G.D., and Fitzgerald, K.A. (2009). An Essential Role for the NLRP3 Inflammasome in Host Defense against the Human Fungal Pathogen Candida albicans. Cell Host Microbe 5, 487-497.
Hornung, V., Bauernfeind, F., Halle, A., Samstad, E.O., Kono, H., Rock, K.L., Fitzgerald, K.A., and Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9, 847-856.
Ikeda, K., Nakayama, Y., Togashi, Y., Obata, Y., Iuga, T., Iasahara, I., Fukumoto, Y., and Yamaguchi, N. (2008). Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity. Exp Cell Res 314, 3392-3404.
Ingley, E. (2012). Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal 10, 21.
Jabara, H.H., McDonald, D.R., Janssen, E., Massaad, M.J., Ramesh, N., Borzutzky, A., Rauter, I., Benson, H., Schneider, L., Baxi, S., et al. (2012). DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol 13, 612-620.
Jin, C., and Flavell, R.A. (2010). Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 30, 628-631.
Joly, S., Ma, N., Sadler, J.J., Soll, D.R., Cassel, S.L., and Sutterwala, F.S. (2009). Cutting Edge: Candida albicans hyphae formation triggers activation of the NLRP3 inflammasome. J Immunol 183, 3578-3581.
Juan-Carlos Hernandez, Cherilyn M. Sirois, and Latz, E. (2011). Activation and regulation of the NLRP3 inflammasome. The Inflammasomes, pp 197-208.
Kanneganti, T.D., Body-Malapel, M., Amer, A., Park, J.H., Whitfield, J., Franchi, L., Taraporewala, Z.F., Miller, D., Patton, J.T., Inohara, N., et al. (2006). Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281, 36560-36568.
Kawakami, T., and Galli, S.J. (2002). Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2, 773-786.
Keck, S., Freudenberg, M., and Huber, M. (2010). Activation of murine macrophages via TLR2 and TLR4 is negatively regulated by a Lyn/PI3K module and promoted by SHIP1. J Immunol 184, 5809-5818.
Lamkanfi, M., and Kanneganti, T.D. (2010). Nlrp3: An immune sensor of cellular stress and infection. Int J Biochem Cell Biol 42, 792-795.
Lee, S.B., Bae, I.H., Bae, Y.S., and Um, H.D. (2006). Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death. J Biol Chem 281, 36228-36235.
Li, Y., Shen, B.F., Karanes, C., Sensenbrenner, L., and Chen, B. (1995). Association between Lyn protein-tyrosine kinase (P53/56(Lyn)) and the beta-subunit of the Granulocyte-Macrophage Colony-Stimulating Factor (Gm-Csf) receptors in a GM-CSF-dependent human megakaryocytic Leukemia-cell line (M-07e). J Immunol 155, 2165-2174.
Liao, P.C., Chao, L.K., Chou, J.C., Dong, W.C., Lin, C.N., Lin, C.Y., Chen, A., Ka, S.M., Ho, C.L., and Hua, K.F. (2013a). Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1beta secretion. Inflamm Res 62, 89-96.
Liao, Y.H., Lin, Y.C., Tsao, S.T., Lin, Y.C., Yang, A.J., Huang, C.T., Huang, K.C., and Lin, W.W. (2013b). HMG-CoA reductase inhibitors activate caspase-1 in human monocytes depending on ATP release and P2X7 activation. J Leukoc Biol 93, 289-299.
Lietzen, N., Ohman, T., Rintahaka, J., Julkunen, I., Aittokallio, T., Matikainen, S., and Nyman, T.A. (2011). Quantitative subcellular proteome and secretome profiling of influenza A virus-infected human primary macrophages. PLoS Pathog 7, e1001340.
Liossis, S.N., Solomou, E.E., Dimopoulos, M.A., Panayiotidis, P., Mavrikakis, M.M., and Sfikakis, P.P. (2001). B-cell kinase lyn deficiency in patients with systemic lupus erythematosus. J Investig Med 49, 157-165.
Lopez-Castejon, G., Theaker, J., Pelegrin, P., Clifton, A.D., Braddock, M., and Surprenant, A. (2010a). P2X(7) receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. J Immunol 185, 2611-2619.
Lowell, C.A. (2004). Src-family kinases: rheostats of immune cell signaling. Mol Immunol 41, 631-643.
Lowell, C.A. (2011). Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells:Signaling Cross Talk. Cold Spring Harb Perspect Biol 3.
Lupetti, A., Paulusma-Annema, A., Senesi, S., Campa, M., Van Dissel, J.T., and Nibbering, P.H. (2002). Internal thiols and reactive oxygen species in Candidacidal activity exerted by an N-terminal peptide of human lactoferrin. Antimicrob Agents Chemother 46, 1634-1639.
Marchetti, S., Gamas, P., Belhacene, N., Grosso, S., Pradelli, L.A., Colosetti, P., Johansen, C., Iversen, L., Deckert, M., Luciano, F., et al. (2009). The caspase-cleaved form of LYN mediates a psoriasis-like inflammatory syndrome in mice. EMBO J 28, 2449-2460.
Masters, S.L. (2013). Specific inflammasomes in complex diseases. Clin Immunol 147, 223-228.
Meng, F., and Lowell, C.A. (1997). Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med 185, 1661-1670.
Miao, E.A., Mao, D.P., Yudkovsky, N., Bonneau, R., Lorang, C.G., Warren, S.E., Leaf, I.A., and Aderem, A. (2010). Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Nat Acado Sci USA 107, 3076-3080.
Misawa, T., Takahama, M., Kozaki, T., Lee, H., Zou, J., Saitoh, T., and Akira, S. (2013). Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14, 454-460.
Mitroulis, I., Skendros, P., and Ritis, K. (2010). Targeting IL-1beta in disease; the expanding role of NLRP3 inflammasome. Eu Int Med 21, 157-163.
Monroe, J.G. (2006). ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 6, 283-294.
Moore, S.F., and MacKenzie, A.B. (2009). NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages. J Immunol 183, 3302-3308.
Netea, M.G., Van der Graaf, C.A.A., Vonk, A.G., Verschueren, I., Van der Meer, J.W.M., and Kullberg, B.J. (2002). The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185, 1483-1489.
Niiro, H., and Clark, E.A. (2002). Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2, 945-956.
Page, T.H., Smolinska, M., Gillespie, J., Urbaniak, A.M., and Foxwell, B.M.J. (2009). Tyrosine kinases and inflammatory signalling. Curr Mol Med 9, 69-85.
Palomaki, J., Valimaki, E., Sund, J., Vippola, M., Clausen, P.A., Jensen, K.A., Savolainen, K., Matikainen, S., and Alenius, H. (2011). Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5, 6861-6870.
Pereira, M.S., Marques, G.G., Dellama, J.E., and Zamboni, D.S. (2011a). The NLRC4 inflammasome contributes to restriction of pulmonary infection by flagellated Legionella spp. that trigger pyroptosis. Front Microbiol 2, 33.
Pereira, M.S., Morgantetti, G.F., Massis, L.M., Horta, C.V., Hori, J.I., and Zamboni, D.S. (2011b). Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J Immunol 187, 6447-6455.
Perez-Lopez, A., Rosales-Reyes, R., Alpuche-Aranda, C.M., and Ortiz-Navarrete, V. (2013). Salmonella downregulates Nod-like receptor family CARD domain containing protein 4 expression to promote its survival in B cells by preventing inflammasome activation and cell death. J Immunol 190, 1201-1209.
Petrilli, V., Dostert, C., Muruve, D.A., and Tschopp, J. (2007). The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19, 615-622.
Proell, M., Riedl, S.J., Fritz, J.H., Rojas, A.M., and Schwarzenbacher, R. (2008). The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 3, e2119.
Prudovsky, I. (2013). Nonclassically secreted regulators of angiogenesis. Angiology 1.
Rathinam, V.A., Vanaja, S.K., and Fitzgerald, K.A. (2012). Regulation of inflammasome signaling. Nat Immunology 13, 333-332.
Reuter, C.W., Morgan, M.A., and Bergmann, L. (2000). Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 96, 1655-1669.
Riteau, N., Baron, L., Villeret, B., Guillou, N., Savigny, F., Ryffel, B., Rassendren, F., Le Bert, M., Gombault, A., and Couillin, I. (2012). ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis 3. e403.
Said-Sadier, N., Padilla, E., Langsley, G., and Ojcius, D.M. (2010). Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. Plos One 5. e10008.
Sato, I., Obata, Y., Kasahara, K., Nakayama, Y., Fukumoto, Y., Yamasaki, T., Yokoyama, K.K., Saito, T., and Yamaguchi, N. (2009). Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci 122, 965-975.
Scapini, P., Pereira, S., Zhang, H., and Lowell, C.A. (2009). Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunological Reviews 228, 23-40.
Schroder, K., and Tschopp, J. (2010). The inflammasomes. Cell 140, 821-832.
Schroder, K., Zhou, R.B., and Tschopp, J. (2010). The NLRP3 inflammasome: A sensor for metabolic danger? Science 327, 296-300.
Shao, W.J., Yu, Z.W., Fantus, I.G., and Jin, T.R. (2010). Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic beta-cells. Cell Signal 22, 1240-1246.
Shio, M.T., Eisenbarth, S.C., Savaria, M., Vinet, A.F., Bellemare, M.J., Harder, K.W., Sutterwala, F.S., Bohle, D.S., Descoteaux, A., Flavell, R.A., et al. (2009). Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5, e1000559.
Smolinska, M.J., Horwood, N.J., Page, T.H., Smallie, T., and Foxwell, B.M.J. (2008). Chemical inhibition of Src family kinases affects major LPS-activated pathways in primary human macrophages. Mol Immunol 45, 990-1000.
Smolinska, M.J., Page, T.H., Urbaniak, A.M., Mutch, B.E., and Horwood, N.J. (2011). Hck tyrosine kinase regulates TLR4-induced TNF and IL-6 production via AP-1. J Immunol 187, 6043-6051.
Stefanova, I., Corcoran, M.L., Horak, E.M., Wahl, L.M., Bolen, J.B., and Horak, I.D. (1993). Lipopolysaccharide induces activation of CD14-associated protein-tyrosine kinase P53/56lyn. J Biol Chem 268, 20725-20728.
Sutterwala, F.S., Mijares, L.A., Li, L., Ogura, Y., Kazmierczak, B.I., and Flavell, R.A. (2007). Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204, 3235-3245.
Taieb, A. (2007). NALP1 and the inflammasomes: challenging our perception of vitiligo and vitiligo-related autoimmune disorders. Pigment Cell Res 20, 260-262.
Thomas, S.M., and Brugge, J.S. (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13, 513-609.
Trinchieri, G., and Sher, A. (2007). Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7, 179-190.
van de Veerdonk, F.L., Joosten, L.A.B., and Devesa, I. (2009). Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1 beta production by the fungal pathogen Candida albicans. J Infect Dis 199, 1087-1096.
Vonk, A.G., Netea, M.G., van Krieken, J.H., Iwakura, Y., van der Meer, J.W.M., and Kullberg, B.J. (2006). Endogenous interleukin (IL)-1 alpha and IL-1beta are crucial for host defense against disseminated candidiasis. J Infect Dis 193, 1419-1426.
Wang, D., Esselman, W.J., and Cole, P.A. (2002). Substrate conformational restriction and CD45-catalyzed dephosphorylation of tail tyrosine-phosphorylated Src protein. J Biol Chem 277, 40428-40433.
Watano, T., Matsuoka, I., and Kimura, J. (2002). Characteristics of ATP-induced current through P2X7 receptor in NG108-15 cells: unique antagonist sensitivity and lack of pore formation. Jpn J Pharmacol 88, 428-435.
Wu, N., Zheng, B., Shaywitz, A., Dagon, Y., Tower, C., Bellinger, G., Shen, C.H., Wen, J., Asara, J., McGraw, T.E., et al. (2013). AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell 49, 1167-1175.
Yang, C.S., Shin, D.M., and Jo, E.K. (2012). The role of NLR-related protein 3 inflammasome in host defense and inflammatory diseases. Int Neurourol J 16, 2-12.
Yew, K.H., and Harrison, C.J. (2011). Blockade of Lyn kinase upregulates both canonical and non-canonical TLR-3 pathways in THP-1 monocytes exposed to human cytomegalovirus. Acta Virol 55, 243-253.
Zhou, R., Tardivel, A., Thorens, B., Choi, I., and Tschopp, J. (2010). Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature immunology 11, 136-140.
Zhu, Q.S., Xia, L., Mills, G.B., Lowell, C.A., Touw, I.P., and Corey, S.J. (2006). G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107, 1847-1856.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60724-
dc.description.abstractSrc-family kinases (SFKs) are non-receptor-type tyrosine kinases, which have been shown to interact with a host of upstream regulators and downstream substrates that play important roles in regulating cell proliferation, migration, differentiation and adhesion. NLRP3 inflammasome is an important intracellular multi-molecular complex in the innate immune system that can control caspase-1 activity which in turn regulates maturation of the pro-inflammatory cytokine interleukin-1β (IL-1β) to against invaded microbial. Recently, SFKs have been revealed to participate in NLRP3 inflammasome activation by malaria hemozoin, asbestos or influenza A. In this study we used genetic knockout approach to further elucidate the roles and the molecular mechanisms of three SFKs (Lyn, Hck, Fgr) in regulating the NLRP3 inflammasome activation in murine macrophages. We found that Lyn, Hck and Fgr can regulate ATP- and Candida albicans-induced caspase-1 activation and IL-1β secretion in different manners. All kinases did not regulate LPS-elicited pro-IL-1β and NLRP3 expression, neither ATP-induced potassium efflux or channel permeability through P2X7 activation. We found that Lyn is a positive regulator for both stimuli-induced ROS production and caspase-1 activation, and promotes TXNIP interaction with NLRP3 under LPS/ATP treatment. Lyn does not alter the decrease of mitochondrial membrane potential induced by LPS/ATP and Candida. Furthermore Lyn also mediates C. albicans-induced cathepsin B activity. Nevertheless, Hck and Fgr are negative regulators for ATP- and Candida-induced IL-1β production. Notably both kinases unlike Lyn did not affect the increased ROS level caused by Candida. We also identified Lyn is an upstream signal molecule of Syk upon Candida infection, and Syk inhibition led to reduction of Candida responses in terms of IL-1β and ROS production. Furthermore, the ability of macrophages in phagocytosis of Candida was not altered by three SFKs, while intracellular pathogen killing ability of macrophages was attenuated in Lyn-/-, but enhanced in Hck-/- and Fgr-/- macrophages. Taken together the three major SFKs in murine macrophages, Lyn, Hck and Fgr, exert different actions in ATP- and Candida-elicited NLRP3 inflammasome activation. Positive regulation of ROS production contributes to the role of Lyn in inflammasome activation, while the exact regulating mechanisms of Hck and Fgr, which are negative regulators in this aspect, need further investigation. In addition, how SFKs differentially control invaded Candida in macrophages remains unclear and requires more study in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:27:33Z (GMT). No. of bitstreams: 1
ntu-102-R00443001-1.pdf: 2552249 bytes, checksum: 09034549644c77dc2c984f3ae6ba4e0f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAbbreviations……………………………1
Abstract……………………………………5
中文摘要……………………………………7
Introduction………………………………9
Materials and Methods …………………33
Results……………………………………42
Discussion…………………………………50
Figures……………………………………58
Appendix……………………………………72
References…………………………………86
dc.language.isoen
dc.subjectNLRP3發炎體zh_TW
dc.subjectLynen
dc.subjectNLRP3 inflammasomeen
dc.title探討Lyn在老鼠巨噬細胞的NLRP3發炎體活化所扮演的角色zh_TW
dc.titleThe role of Lyn in NLRP3 inflammasome activation in murine macrophagesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐立中,謝世良,顏茂雄,符文美
dc.subject.keywordNLRP3發炎體,zh_TW
dc.subject.keywordLyn,NLRP3 inflammasome,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved