Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60716
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
dc.contributor.author | Yu-Chen Yeh | en |
dc.contributor.author | 葉昱辰 | zh_TW |
dc.date.accessioned | 2021-06-16T10:27:14Z | - |
dc.date.available | 2020-08-04 | |
dc.date.copyright | 2020-08-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-16 | |
dc.identifier.citation | [1] D. Haviland, Y. Liu, and A. M. Goldman, Physical Review Letters 62, 2180 (1989). [2] V. Berezinsky, Zh. Eksp. Teor. Fiz. 61, 610 (1972). [3] J. M. Kosterlitz and D. J. Thouless, Journal of Physics C: Solid State Physics 6, 1181 (1973). [4] W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, X. Xie, Science China Physics, Mechanics Astronomy, 60 (2017) 120314. [5] N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. De Riedmatten, and N. Gisin, Physical Review A 76, 050301 (2007). [6] N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, Nature 478, 360 (2011). [7] A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, Science 343, 58 (2014). [8] H. K. Onnes, Commun. Phys. Lab. Univ. Leiden, vol. 11, no. 1206, pp. 17–19, (1911) [9] W. Meissner and R. Ochsenfeld, Naturwiss, 21, 787 (1933). [10] C. Kittel, Introduction to Solid State Physics, sixth edition, Wiley, 2003, 264 pages. [11] F. London and H. London, Proc. R. Soc., A, 155, 71 (1935). [12] V. L. Ginzburg and L. D. Landau, J. Exp. Theor. Phys. (USSR) 20, 1064 (1950). [13] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 106, 162 (1957). [14] A.C. Rose-Innes, Introduction to Superconductivity, 2nd Edition, Pergamon, 1978, 186 pages. [15] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 5 (1957). [16] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 106, 162 (1957). [17] Leon Cooper, Phys. Rev. 104, 1189 (1956). [18] Alan M. J. Kadin, Supercond. Nov. Mag. 20(4), 285 (2005) [19] Shigeji Fujita; Kei Ito; and Slavador Godoy, (2009). Quantum Theory of Conducting Matter. Springer Publishing. pp. 15–27. [20] Ching-Chen Yeh, “Topilogical transistion and violation og Pauli paramagnetic limit in Al nanofilms grown by molecular beam epitaxy,” M.S. thesis, National Taiwan University, Taiwan, 2019. [21] Richard P. Feynman, Robert Leighton; and Matthew Sands. Lectures on Physics, Vol.3. Addison–Wesley. pp. 21–7, 8. (1965) [22] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett.41, 121 (1976) [23] https://en.wikipedia.org/wiki/Niobium_nitride [24] X.-J. Chen, V.V. Struzhkin, Z. Wu, M. Somayazulu, J. Qian, S. Kung, A.N. Christensen, Y. Zhao, R.E. Cohen, H.-k. Mao, Proceedings of the National Academy of Sciences 102(9), 3198-3201. (2005) [25] J. H. Goldsmith, R. Gibson, T. Cooper, T. J. Asel, S. Mou, D. C. Look, J. S. Derov, and J. R. Hendrickson, Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films 36, 061502 (2018). [26] S. Chockalingam, M. Chand, J. Jesudasan, V. Tripathi, and P. Raychaudhuri, Phys. Rev. B 77, 214503 (2008). [27] G. Jouve, C. Séverac, and S. Cantacuzene, Thin Solid Films 287, 146 (1996). [28] J. D. Jackson, Classical Electrodynamics, third edition, Wiley, 1999, 311 pages. [29] J. C. WHEATLEY, Le Journal de Physique Colloques 31, C3 (1970). [30] Kaveh Ahadi, Luca Galletti, Yuntian Li, Salva Salmani-Rezaie, Wangzhou Wu, and Susanne Stemmer, Sci. Adv. 5, 4 (2019). [31] V. Celebonovic, J. Pesic, R. Gajic, B. Vasic and A. Matkovic, J. Appl. Phys. 125, 154301 (2019). [32] M. Kim, Y. Kozuka, C. Bell, Y. Hikita, and H. Hwang, Physical Review B 86, 085121 (2012). [33] D. S. Fisher, M. P. Fisher and D. A. Huse, Phys. Rev. B, 43, 130 (1991). [34] S. W. Pierson, M. Friesen, S. M. Ammirata, J. C. Hunnicutt and L. A. Gorham, Phys. Rev. B, 60, 1309 (1999). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60716 | - |
dc.description.abstract | 別列津斯基-科斯特利茨-索利斯相變(Berezinskii–Kosterlitz–Thouless transition, BKT相變)是發生於二維系統中的特殊相變。論文中藉由一系列不同厚度及生長於不同基板上的氮化鈮(NbN)薄膜,探討厚度與BKT相變之關係。從實驗結果中我們得知,生長於MgO基板上的NbN薄膜之超導臨界溫度(TC)高於生長於藍寶石基板上的。有趣的是,儘管厚度已經達到100nm厚的薄膜,依舊觀察到BKT相變,並藉由三種方法,證明了BKT相變溫度的真實性。從實驗結果中得知,我們在不同厚度的氮化鈮薄膜中均觀察到BKT相變。 | zh_TW |
dc.description.abstract | The Berezinskii–Kosterlitz–Thouless transition (BKT phase transition) is a special phase transition that occurs in two-dimensional systems. In this thesis, a series of niobium nitride (NbN) thin films with different thickness and grown on different substrates are tudied. From the experimental results, we observe that the superconducting critical temperature (TC) of NbN thin films grown on MgO substrates is higher than that of NbN grown on sapphire substrate. Interestingly, even though the film has a thickness of 100 nm, the BKT phase transition is still observed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:27:14Z (GMT). No. of bitstreams: 1 U0001-0307202009542300.pdf: 3750416 bytes, checksum: c83e4e47e8bcc7e763c61198327b6fd3 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x Chapter 1 Introduction 1 Chapter 2 Superconductivity 3 2.1 Meissner-Ochsenfeld Effect 3 2.2 Type- I and Type- II Superconductor 4 2.3 London Equations 5 2.4 Ginzburg-Landau Theory 6 2.5 The Coherence Length and GL Penetration Depth 7 2.6 Magnetization of the Superconductor 8 2.7 Superconducting Vortices 10 2.8 BCS theory 10 2.8.1 Cooper pair 11 2.9 Two-dimensional Superconductivity System 12 2.9.1 Berezinskii–Kosterlitz–Thouless Transition 12 2.9.2 Halperin-Nelson Theory 15 REFERENCES 16 Chapter 3 Sample and Measurement Technique 17 3.1 Sputtering system 17 3.2 Morphology and Structural Properties of niobium nitride thin film 18 3.2.1 Structural Properties 18 3.2.2 Electron Spectroscopy for Chemical Analysis (XPS) 22 3.3 Magnetic Properties 25 3.3.1 Temperature-dependent Magnetization 25 3.4 Optical Properties 30 3.5 Four-terminal DC Measurements 31 3.6 Low-temperature System 31 REFERENCES 33 Chapter 4 Experimental results on NbN thin films grown on sapphire and MgO by sputtering 34 4.1 Superconducting State Properties 34 4.1.1 Measurement Without Field 34 4.1.2 Measurements in an external magnetic field 36 4.2 Analysis for BKT Transition 44 4.2.1 Finding Exponent by log-log Scale I-V curve 44 4.2.2 T-R Curve Fitting by H-N Equation 49 4.2.3 Dynamical Scaling 52 REFERENCES 57 Chapter 5 Conclusion 58 | |
dc.language.iso | en | |
dc.title | 不同厚度氮化鈮薄膜之別列津斯基-科斯特利茨-索利斯相變研究 | zh_TW |
dc.title | Berezinskii–Kosterlitz–Thouless Transition in Niobium Nitride Thin Films with Different Thickness | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂宥蓉(Yu-Jung Lu),林立弘(Li-Hung Lin) | |
dc.subject.keyword | 超導現象,氮化鈮薄膜,別列津斯基-科斯特利茨-索利斯相變, | zh_TW |
dc.subject.keyword | Berezinskii–Kosterlitz–Thouless transition,niobium nitride thin films,superconductivity, | en |
dc.relation.page | 58 | |
dc.identifier.doi | 10.6342/NTU202001286 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
Appears in Collections: | 應用物理研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-0307202009542300.pdf Restricted Access | 3.66 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.