Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60710
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江宏仁(Hong-Ren Jiang)
dc.contributor.authorCheng-Tse Wuen
dc.contributor.author吳承澤zh_TW
dc.date.accessioned2021-06-16T10:27:00Z-
dc.date.available2015-08-15
dc.date.copyright2013-08-28
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation1. J. Xi, J. J. Schmidt and C. D. Montemagno, Nature materials 4 (2), 180-184 (2005).
2. W. P. Hsu, R. Yu and E. Matijević, Journal of colloid and interface science 156 (1), 56-65 (1993).
3. S. K. Wason and D. E. Rice, (Google Patents, 1997).
4. J. G. Masters, M. Prencipe, J. A. Burke and L. J. Vellekoop, (Google Patents, 1997).
5. K. M. Kallury, P. M. Macdonald and M. Thompson, Langmuir 10 (2), 492-499 (1994).
6. Y. Izumi, K. Hisano and T. Hida, Applied catalysis A: general 181 (2), 277-282 (1999).
7. E. Angeletti, C. Canepa, G. Martinetti and P. Venturello, Tetrahedron letters 29 (18), 2261-2264 (1988).
8. K. D. Glanz, W. J. Becker and R. E. Miller, (Google Patents, 1980).
9. B. Midmore, Colloids and Surfaces A: Physicochemical and Engineering Aspects 132 (2), 257-265 (1998).
10. W. Li, X. Sha, W. Dong and Z. Wang, Chemical Communications (20), 2434-2435 (2002).
11. J. N. Cha, G. D. Stucky, D. E. Morse and T. J. Deming, Nature 403 (6767), 289-292 (2000).
12. G. S. Attard, J. C. Glyde and C. G. Goltner, Nature 378 (6555), 366-368 (1995).
13. H. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara and G. A. Ozin, Nature 379 (6567), 703-705 (1996).
14. S. L. Burkett, S. D. Sims and S. Mann, Chem. Commun. (11), 1367-1368 (1996).
15. S. I. Zones, A. W. Burton, G. S. Lee and M. M. Olmstead, Journal of the American Chemical Society 129 (29), 9066-9079 (2007).
16. A. Van Blaaderen and A. Vrij, Langmuir 8 (12), 2921-2931 (1992).
17. Y. Lu, J. McLellan and Y. Xia, Langmuir 20 (8), 3464-3470 (2004).
18. R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs and A. E. Ostafin, Chemistry of materials 14 (11), 4721-4728 (2002).
19. S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki and T. Tatsumi, Nature 429 (6989), 281-284 (2004).
20. C. Yu, J. Fan, B. Tian, D. Zhao and G. D. Stucky, Advanced materials 14 (23), 1742-1745 (2002).
21. M. Antonietti, B. Berton, C. Goltner and H. P. Hentze, Advanced Materials 10 (2), 154-159 (1998).
22. W. Stober, A. Fink and E. Bohn, Journal of colloid and interface science 26 (1), 62-69 (1968).
23. S. Bharathi, M. Nogami and S. Ikeda, Langmuir 17 (1), 1-4 (2001).
24. T. J. Brunner, P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruinink and W. J. Stark, Environmental science & technology 40 (14), 4374-4381 (2006).
25. K.-C. Lin, V. Kunduru, M. Bothara, K. Rege, S. Prasad and B. Ramakrishna, Biosensors & bioelectronics 25 (10), 2336 (2010).
26. B. G. Trewyn, S. Giri, I. I. Slowing and V. S.-Y. Lin, Chemical communications (31), 3236-3245 (2007).
27. H.-H. Yang, H.-Y. Qu, P. Lin, S.-H. Li, M.-T. Ding and J.-G. Xu, Analyst 128 (5), 462-466 (2003).
28. S. C. Tsang, C. H. Yu, X. Gao and K. Tam, The Journal of Physical Chemistry B 110 (34), 16914-16922 (2006).
29. X. Gao, K. K. Yu, K. Y. Tam and S. C. Tsang, Chemical Communications (24), 2998-2999 (2003).
30. R. R. Naik, L. L. Brott, S. J. Clarson and M. O. Stone, Journal of nanoscience and nanotechnology 2 (1), 95-100 (2002).
31. T. K. Jain, I. Roy, T. K. De and A. Maitra, Journal of the American Chemical Society 120 (43), 11092-11095 (1998).
32. K. Flodstrom, V. Alfredsson and N. Kallrot, Journal of the American Chemical Society 125 (15), 4402-4403 (2003).
33. G. Ozin, Journal of Materials Chemistry 8 (3), 743-750 (1998).
34. C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija and V. S.-Y. Lin, Journal of the American Chemical Society 125 (15), 4451-4459 (2003).
35. S. Hiyama, R. Gojo, T. Shima, S. Takeuchi and K. Sutoh, Nano letters 9 (6), 2407-2413 (2009).
36. M. Kohri, M. Sato, F. Abo, T. Inada, M. Kasuya, T. Taniguchi and T. Nakahira, European Polymer Journal 47 (12), 2351-2360 (2011).
37. J. Schellenberg and N. Tomotsu, Progress in polymer science 27 (9), 1925-1982 (2002).
38. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami and E. Duguet, Journal of materials chemistry 15 (35-36), 3745-3760 (2005).
39. A. Perro, S. Reculusa, F. Pereira, M.-H. Delville, C. Mingotaud, E. Duguet, E. Bourgeat-Lami and S. Ravaine, Chemical communications (44), 5542-5543 (2005).
40. D. Suzuki and H. Kawaguchi, Colloid and Polymer Science 284 (12), 1471-1476 (2006).
41. J. Zhang, J. Jin and H. Zhao, Langmuir 25 (11), 6431-6437 (2009).
42. A. Perro, F. Meunier, V. Schmitt and S. Ravaine, Colloids and Surfaces A: Physicochemical and Engineering Aspects 332 (1), 57-62 (2009).
43. T. Nisisako, T. Torii, T. Takahashi and Y. Takizawa, Advanced Materials 18 (9), 1152-1156 (2006).
44. A. Einstein, Ann. der Physik 17, 549 (1905).
45. M. Cappelezzo, C. Capellari, S. Pezzin and L. Coelho, The Journal of chemical physics 126, 224516 (2007).
46. M. Instruments, Zetasizer Nano Serles Technical Note. MRK654-01 (2011).
47. G. E. Morris, W. A. Skinner, P. G. Self and R. S. C. Smart, Colloids and Surfaces A: Physicochemical and Engineering Aspects 155 (1), 27-41 (1999).
48. J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh and R. Golestanian, Physical review letters 99 (4), 048102 (2007).
49. M. Phibbs and P. A. Giguere, Canadian Journal of Chemistry 29 (2), 173-181 (1951).
50. W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert and V. H. Crespi, Journal of the American Chemical Society 126 (41), 13424-13431 (2004).
51. J. R. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media. (Springer, 1965).
52. R. Golestanian, T. Liverpool and A. Ajdari, New Journal of Physics 9 (5), 126 (2007).
53. M. Holmberg, A. Kuhle, J. Garnas, K. A. Morch and A. Boisen, Langmuir 19 (25), 10510-10513 (2003).
54. T. Koishi, S. Yoo, K. Yasuoka, X. C. Zeng, T. Narumi, R. Susukita, A. Kawai, H. Furusawa, A. Suenaga and N. Okimoto, Physical review letters 93 (18), 185701 (2004).
55. V. S. J. Craig, Soft Matter 7 (1), 40-48 (2011).
56. N. Mano and A. Heller, Journal of the American Chemical Society 127 (33), 11574-11575 (2005).
57. B. Derjaguin and T. Voropayeva, Journal of Colloid Science 19 (2), 113-135 (1964).
58. Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen and T. E. Mallouk, Langmuir 22 (25), 10451-10456 (2006).
59. I. Katsounaros, W. B. Schneider, J. C. Meier, U. Benedikt, P. U. Biedermann, A. A. Auer and K. J. Mayrhofer, Physical Chemistry Chemical Physics 14 (20), 7384-7391 (2012).
60. X.-D. Wang, Z.-X. Shen, T. Sang, X.-B. Cheng, M.-F. Li, L.-Y. Chen and Z.-S. Wang, Journal of colloid and interface science 341 (1), 23-29 (2010).
61. P. A. Kralchevsky and N. D. Denkov, Current Opinion in Colloid & Interface Science 6 (4), 383-401 (2001).
62. T. Okubo, S. Chujo, S. Maenosono and Y. Yamaguchi, Journal of Nanoparticle Research 5 (1-2), 111-117 (2003).
63. S. Lu, J. T. Kunjappu, P. Somasundaran and L. Zhang, Colloids and Surfaces A: Physicochemical and Engineering Aspects 324 (1), 65-70 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60710-
dc.description.abstract近十年來,微奈米主動材料的研究開始蓬勃發展,人們研究其運動機制與發展控制運動的手段,也設下了許多實用願景,諸如感光材料、生物材料、藥物載體等,而探求微奈米主動材料的製備方式、載物裝填、運動設計等等是現階段的努力目標。在過去的報導中,半球面鍍上鉑金屬的Janus粒子放入雙氧水水溶液中有自泳動的現象,其運動方向為遠離催化端。科學家試圖找出一個力學模型來描述此自泳動,而我們發現,在含有雙十二烷基二甲基溴化銨(DDAB)的雙氧水水溶液中Janus粒子自泳動方向反轉,此現象與許多過去的假設不符合,而也給了我們一把解開自泳動力學機制謎團的鑰匙。
  過去的觀點,Janus粒子在催化端進行異相催化反應,反應產生新溶質與氧氣氣泡,而這些被視為自泳動的主因。在加入雙十二烷基二甲基溴化銨後運動方向反轉,不只將前述可能推翻,也由於雙十二烷基二甲基溴化銨為陽離子界面活性劑,對帶負電的粒子表面有特定性,引導我們猜測自泳動的來源可能與表面的帶電荷轉變有關。我們也觀察到陽離子界面活性劑加入溶液中,對帶負電荷的膠體粒子進行吸附,在超過一臨界濃度時,帶負電荷的膠體粒子出現電荷正負反轉,此電荷反轉的濃度我們將之命名為臨界電轉濃度。Janus粒子的自泳動方向反轉濃度與此臨界電轉濃度呈現吻合,使我們可以大膽猜測Janus粒子在雙氧水中的自泳動可符合自電泳模型。
zh_TW
dc.description.abstractIn recent years, the research of active material has been widely developed, including motion mechanics, motion control, and application ranging from optical materials and biomaterials to medicine delivery. At the present stage, scientists focus on topics of active material preparation, material carrying and packing, and motion design. It has been reported that Janus particles made by coating platinum on the hemisphere in hydrogen peroxide solution convert chemical energy to kinetic energy and cause self-propulsion, and the direction of self-propulsion is away the catalytic side. Scientists attempted to find out the mechanism of this kind of self-propulsion. We discovered that after a small amount of surfactant, DDAB (Didodecyldimethylammonium bromide) has been added to the hydrogen peroxide solution, the direction of self-propulsion reversed. This phenomenon contradicts many suggested propulsion model. However, it also provides us a clue to self-propulsion mechanism.
In general opinion, heterogeneous catalytic reaction occurs on the coated side and generates excess solute and oxygen bubbles, which were regarded as the major cause of self-propulsion. Those propulsion models failed because small amount of DDAB in the solution causes self-propulsion to reverse. DDAB is cationic surfactant, may be adsorbed specifically on the negatively charged surface of Janus particle. We also observed that when added DDAB concentration was higher than a critical point, the particle surface charge reversed. We named this point isoelectric concentration. The concentration causing self-propulsion direction reverse matches with isoelectric concentration, so we suggest a self-electrophoretic model to the self-propulsion of Janus particles in hydrogen peroxide solution.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:27:00Z (GMT). No. of bitstreams: 1
ntu-102-R00543068-1.pdf: 3319948 bytes, checksum: 044122d26064829203bb5596fec2a477 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
CONTENTS iv
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 二氧化矽膠體粒子 3
1.2.1 二氧化矽膠體粒子的化學組成 4
1.2.2 二氧化矽膠體粒子的研究應用 4
1.3 聚苯乙烯粒子 7
1.3.1 聚苯乙烯 8
1.3.2 聚苯乙烯粒子與其科學前景 10
1.4 Janus粒子 12
1.4.1 Janus粒子的製備 13
1.4.2 Janus粒子的研究應用 17
1.5 粒子在液體中的運動 19
1.5.1 膠體粒子與布朗運動 19
1.5.2 電雙層模型 22
1.5.3 德拜長度與界達電位 23
1.5.4 方均位移 28
1.6 Janus粒子在雙氧水水溶液中的方向性運動 32
1.6.1 界面張力 34
1.6.2 擴散泳 37
1.6.3 氣泡推進 41
1.6.4 自電泳 43
1.7 研究動機 46
第二章 儀器、藥品 47
2.1 儀器 47
2.1.1 濺鍍機 47
2.1.2 單角度動態靜態散射儀 48
2.1.3 其他 51
2.2 藥品 52
2.2.1 雙氧水 52
2.2.2 介面活性劑 54
2.2.3 其他 56
第三章 實驗步驟 57
3.1 以史特伯法製作二氧化矽粒子 57
3.1.1 高濃度矽酸乙酯合成法 57
3.2 使用濺鍍機合成鍍鉑Janus粒子 59
3.2.1 膠體粒子單層製作 59
3.2.2 真空氬氣電漿 60
3.2.3 超音波震盪取出Janus粒子與Janus粒子的保存 61
3.3 以顯微鏡觀察Janus粒子移動 63
3.3.1 以封口蠟膜製作反應觀察槽 63
3.3.2 影像剪輯與粒子追蹤 64
3.3.3 方均位移計算與作圖 65
第四章 實驗結果 67
4.1 雙氧水水溶液濃度與速度關係 67
4.2 離子強度對速度的影響 69
4.2.1 加入氯化鈉 69
4.3 加入界面活性劑對速度的影響 72
4.3.1 非離子界面活性劑 72
4.3.2 陰離子界面活性劑 72
4.3.3 陽離子界面活性劑 75
4.4 陽離子界面活性劑吸附模型 82
4.4.1 陽離子界面活性劑的吸附與脫去 82
4.4.2 自電泳模型 85
4.4.3 實際印證 87
第五章 結論 101
參考資料 102
dc.language.isozh-TW
dc.subject界達電位zh_TW
dc.subjectJanus奈米粒子zh_TW
dc.subject雙氧水zh_TW
dc.subjectJanus nanoparticleen
dc.subjecthydrogen peroxideen
dc.subjectzeta potentialen
dc.title非對稱粒子在雙氧水水溶液中運動研究zh_TW
dc.titleMotion of Spherical Catalytic Swimmer in Hydrogen Peroxideen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃仲仁(Jung-Ren Huang),林耿慧(Keng-Hui Lin),周逸儒(Yi-Ju Chou)
dc.subject.keywordJanus奈米粒子,雙氧水,界達電位,zh_TW
dc.subject.keywordJanus nanoparticle,hydrogen peroxide,zeta potential,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved