請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60703完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許銘熙(Ming-Hsi Hsu) | |
| dc.contributor.author | Yi-Xuan Li | en |
| dc.contributor.author | 李懿軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:26:43Z | - |
| dc.date.available | 2015-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | 1. 江明晃,2006,” 台中市區數值地形解析度對淹水模擬結果之比較”,國立台灣大學生物環境系統工程研究所碩士論文。
2. 沈榮茂、楊德良,1992,”流域之漫地流有限元素模式及穩定度分析之研究”,第六屆水利工程研討會論文集pp.82-93。 3. 吳啟瑞,1993,”八掌溪流域之淹水模擬”,國立台灣大學農業工程研究所碩士論文。 4. 許銘熙、鄧慰先、盧重任、黃成甲、葉森海,1998,”抽水站與閘門操作對都會區淹水影響之研究(一)”,行政院國科會。 5. 許銘熙、黃成甲、鄒亞達,2009,行政院國家科學委員會,總計畫:雷達降雨應用在洪水及淹水預報之研究(3/3)-子計畫四:即時淹水境況模擬技術研發(3/3)。 6. 黃成甲,1997,” 流域洪水與淹水演算模式之研究”,國立台灣大學農業工程研究所碩士論文。 7. 陳昌榮,2002,”流域暴雨逕流和淹水之模擬”,國立台灣大學生物環境系統工程研究所碩士論文。 8. 陳彥宏,2008,”流域格網局部細化之淹水模擬”,國立台灣大學生物環境系統工程研究所碩士論文。 9. 楊昌儒、蔡長泰,1998,”數值高程模型解析度對嘉義沿海地區淹水模式影響之研究─以賀伯颱風為例”,台灣水利第46第一期,pp.43-52。 10. 賴進松、林孟郁,2000,”台北縣三重蘆洲及新莊樹林區淹水預測之研究”,89年農工研討會論文。 11. 盧重任,1998,”台北縣板和地區洪水及淹水演算模擬”,國立台灣大學農業工程研究所碩士論文。 12. 鄒亞達,2009,”淹水細化網格邊界處理之研究”,國立台灣大學生物環境系統工程研究所碩士論文。 13. 顏清連、許銘熙、陳昶憲、賴進松,1986,”淡水河系洪水演算模式(四)堤防潰決洪流模式之建立”,行政院國科會,防災科技研究報告pp.75-19。 14. 蘇郁惠,2008,”簡易空間分布之淹水計算模式”,國立台灣大學生物環境系統工程研究所碩士論文。 15. Codenotti, B. and Leoncini, L., 1993, 'Introduction to Parallel Processing', Addison-Wesley, Reading, MA. 16. Dawson, C. N., Du, Q., and Dupont, T. F., 1991, 'A Finite Difference Domain Decomposition Algorithm for Numerical Solution of the Heat Equation', Mathematics of Computation, 57(195), 63-71. 17. Hillis, W. D., 1993, 'What Is Massively Parallel Computing, and Why Is It important', In: Metropolis N. and Rota, G. (Eds.), A New Era in Computation, The MIT Press, London, 1-16. 18. Hsieh, S. H. and Abel J. F., 1997, 'Evaluation of Automatic Domain Partitioning Algorithm for Parallel Finite Element Analysis', International Journal for Numerical Methods in Engineering, 40. 1025-1051. 19. Hervouet J.M., 2000, 'A high resolution 2-D dam-break model using parallelization'.Hydrol Process 2000;14:2211–30. 20. Hluchy, L., Tran, V.D., Astalos, J., Dobrucky, M., Nguyen, G. T., 2002, 'Parallel Flood Modeling Systems',P.M.A. Sloot et al. (Eds.): ICCS, LNCS 2329, pp. 543-551, 2002. 21. John, C., 2006, 'Performance of Parallel Implementations of an Explicit Finite-Volume Shallow-Water Model', JOURNAL OF COMPUTING IN CIVIL ENGINEERING ASCE/MARCH/APRIL 2006/99-110. 22. Jeffrey, C. N., 2009, 'Parallelisation of storage cell flood models using OpenMP', Environmental Modelling & Software 24 (2009) 872–877. 23. Jeffrey, C. N., Timothy, J. F., Paul, D. B., Nigel, G. W., 2010, “A comparison of three parallelisation methods for 2D flood inundation models”, Environmental Modelling & Software 25 (2010) 398–411. 24. Li, M.H., Cheng, H.P. and Yeh, G.T., 2000, 'Solving 3D Subsurface Flow and Transport with Adaptive Multigrid', Journal of Hydrologic Engineering, Vol.5, Issue 1, pp.74-81, 2000. 25. Lamby, P., Muller, S. and Stiriba, Y., 2005, 'Solution of Shallow Water Equations Using Fully Adaptive Multiscale Schemes', International Journal for Numerical Methods in Fluids, Vol.49 (4), pp.417-437, 2005. 26. Liang, Q. , 2008, 'Flood Inundation Modeling with an Adaptive Quadtree Grid Shallow Water Equation Solver', JOURNAL OF HYDRAULIC ENGINEERING c ASCE / NOVEMBER 2008, 1603-1610. 27. McMillan, H.K., 2007, 'Reduced complexity strategies for modelling urban floodplain inundation', Geomorphology 90 226–243.,2007. 28. Paglieri, L., Ambrosi, D., Formaggia, L., Quarteroni, A., and Scheinine, A. L., 1997, 'Parallel Computation for Shallow Water Flow: A Domain Decomposition Approach', Parallel Computing, 23, 1261-1277. 29. Rodrigue, G, 1992, 'Domain Decomposition: A Unified Approach of Solving Fluid Mechanics Problems on Parallel Computers', In: Adeli, H. (Ed.), Parallel Processing in Computational Mechanics, Marcel Dekker, New York. 297-330. 30. Ruge, J.W., Mccormick, S.F. and Yee, S.Y.K., 1995 'Multilevel Adaptive Methods for Semiimplicit Solution of Shallow-Water Equations on a Sphere', Monthly Weather Review, Vol.123 (7), pp.2197-2205. 31. Simon, H. D., 1991, 'Partitioning of Unstructured Problems for Parallel Processing', Computing Systems in Engineering, 2(2/3), 135-148. 32. Spitaleri, R.M., and Corinaldesi, L., 1997, 'Multigrid Computation for the Two-dimensional Shallow Water Equations', Nonlinear Analysis Theory Methods & Applications, Vol.30 (2), pp.709-717, 1997. 33. Sanders, B. F., 2010, ' A parallel, unstructured grid, Godunov-type, shallow-water code for high-resolution flood inundation modeling at the regional scale', Advances in Water Resources 33 (2010) 1456–1467. 34. Yu, D. and Lane, S. N., 2006,'Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: mesh resolution effects', HYDROLOGICAL PROCESSES, Hydrol. Process. 20, 1541–1565 (2006). 35. Yu, D. and Lane, S. N.,2006, 'Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment', HYDROLOGICAL PROCESSES, Hydrol. Process. 20, 1567–1583 (2006). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60703 | - |
| dc.description.abstract | 台灣地區地理位置與氣候特殊,每遭颱風或暴雨事件,往往造成中下游地區淹水氾濫,導致生命財產嚴重損失,應用二維淹水模式模擬淹水潛勢圖供決策單位及民眾因應預警,將有助於減輕洪水帶來之損失。
良好的數值模式,需兼顧準確性、效率性及穩定性,隨著近年遙測技術迅速發展,地形資料解析度提高,使得淹水模式準確性大幅提升。但假若使用高精度的數值地形資料(DTM),卻使得二維淹水模式演算時間過於冗長,效率大幅降低。本研究使用多重尺度局部細化方法於二維淹水模式當中,運用不同解析度之粗、細網格,進行多重尺度之模擬,將可減少網格計算量,提高演算效率,同時兼顧模擬之準確性。 隨著科技日新月異,除了地形解析度及相關觀測資料趨於龐大完整外,電腦處理器也大幅發展進步,程式開發現已普遍朝向多執行緒之平行化處理發展,因此在二維淹水模式中,輸入資料解析度提升之同時,計算資源上也應加以有效利用及優化,本研究於二維淹水程式中修改加入平行演算法,於多重尺度局部細化方法當中,將全區粗網格與數個局部細化網格區域,獨立交由不同執行緒進行平行演算,以期提高二維淹水模式之演算效率。 本研究以曾文溪流域北岸為實際模擬案例,採用2009年8月重創台灣南部之莫拉克颱風事件進行模式精準度及演算效率度分析探討。經由案例模擬,平行演算法應用於多重尺度格網方法當中,局部高解析細格網之模擬結果,達到與全區細網格相符之水準,且搭配平行演算法,使演算時間大幅減少、效率大幅提升。本研究在兼顧準確與穩定性的同時,能快速演算有效地提供即時淹水資訊,作為防災管理決策支援達到減災之效果。 | zh_TW |
| dc.description.abstract | In Taiwan, due to the special physiographic and climatic conditions, typhoon or rainstorm event occurs frequently. Besides, it usually causes disastrous inundation in the midstream and downstream floodplain, and takes losses of lives and property. The two-dimensional inundation model can simulate flood risk map in advance. It predicts the potential flood depth and velocity, enabling informed government improve emergency planning and policy to reduce the losses.
A good numerical model should give consideration to accuracy, efficiency and stability. However, it will cost large amount computational time in large fine resolution simulate areas. The multi-scale inundation simulation model using local fine grid at the dense population areas could reduce the time of calculation. The method is a feasible solution to provide a much higher resolution mesh with less computational time. Recently, with the development of science and technology, the developments in computer hardware have greatly advanced. Computational time can be reduced by running in parallel over multiple threads. The main purpose of this research focuses on parallel the multi-scale computational method. In multi-scale inundation model, this research parallelizes global domain and all the local regions to different threads by parallel algorithm. The method makes the flood inundation model would be reduced computational time and speedup the efficiency. The parallel method will be applied to the simulation of typhoon Morakot event of 2009 in Tseng-Wen river basin as the study case. This study compares accuracy and efficiency by the error correction and speedup ratio. The results show that it is not only improving the accuracy of simulation error to close the level of fine-grid simulation in the global area, but also raising the efficiency of computational time. The method of parallel for multi-scale inundation simulation strikes a good balance between accuracy and efficiency. The significant result of this study will greatly improve the real-time inundation early-warning system, and this high efficiency model would provide instant inundation information to authority, and it will assist the disaster reduction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:26:43Z (GMT). No. of bitstreams: 1 ntu-102-R00622019-1.pdf: 21226574 bytes, checksum: 434c6307d03559ce119c688d73a6822f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目 錄
誌謝...........................................................................................I 摘要...........................................................................................II Abstract.......................................................................................III 目錄...........................................................................................V 圖錄...........................................................................................VII 表錄...........................................................................................XI 第一章 緒論....................................................................................1 1-1 研究背景與目的.............................................................................1 1-2 文獻回顧...................................................................................2 1-2-1二維漫地流模式............................................................................2 1-2-2多重尺度法................................................................................3 1-2-3平行演算法................................................................................4 第二章 演算模式................................................................................5 2-1 二維漫地流淹水模式.........................................................................5 2-1-1基本方程式................................................................................5 2-1-2 數值方法.................................................................................6 2-1-3 初始及邊界條件...........................................................................8 2-2 多重尺度法................................................................................10 2-2-1 多重尺度之演算時距......................................................................11 2-2-2 多重尺度之邊界銜接......................................................................13 2-2-3細化網格邊界高地處理.....................................................................15 2-3 平行演算法................................................................................17 第三章 研究區域...............................................................................22 3-1 理想案例..................................................................................22 3-2 現地案例..................................................................................24 3-2-1 區域概述................................................................................24 3-2-2 地文資料................................................................................28 3-2-3 雨量資料................................................................................32 第四章 模擬結果與比較.........................................................................39 4-1 理想案例模擬結果..........................................................................40 4-2 實際案例模擬結果..........................................................................42 4-2-1 全區模擬結果............................................................................42 4-2-2 局部模擬結果............................................................................43 4-2-3 演算效率比較............................................................................47 第五章 結論與建議.............................................................................94 5-1 結論......................................................................................94 5-2 建議......................................................................................96 參考文獻......................................................................................97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 局部細化 | zh_TW |
| dc.subject | 平行演算法 | zh_TW |
| dc.subject | 平行化 | zh_TW |
| dc.subject | 淹水模式 | zh_TW |
| dc.subject | 多重尺度 | zh_TW |
| dc.subject | Multi-thread | en |
| dc.subject | Parallel algorithm | en |
| dc.subject | Parallel computing | en |
| dc.subject | Multi-scale simulation | en |
| dc.subject | Inundation model | en |
| dc.title | 局部細化淹水平行演算之研究 | zh_TW |
| dc.title | Parallel Algorithm for Down-scale Inundation Simulations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張倉榮(Tsang-Jung Chang),柳文成(Wen-Cheng Liu),葉克家(Keh-Chia Yeh) | |
| dc.subject.keyword | 平行演算法,平行化,淹水模式,多重尺度,局部細化, | zh_TW |
| dc.subject.keyword | Parallel algorithm,Parallel computing,Multi-thread,Inundation model,Multi-scale simulation, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 20.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
