Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60680
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳
dc.contributor.authorWei-Shiang Sunen
dc.contributor.author孫偉翔zh_TW
dc.date.accessioned2021-06-16T10:25:50Z-
dc.date.available2018-08-28
dc.date.copyright2013-08-28
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation1. 王德檳、張德純. 1998. 芽苗菜生產技術圖冊. 中國農業出版社. 北京.
2. 成元剛、王銳、孟麗. 2012. 光照強度對红花芽菜生長和維生素C含量的影響. 北方園藝. 22:154-156.
3. 朱秀敏、王彩君、王建軍. 2012. 幾種芽菜維生素C含量的比較研究. 北方園藝. 3:35-37.
4. 行政院農業委員會農糧署. 2008. 選購蔬菜要領-芽菜類. 作物生產組. 15 December 2012. <http://www.afa.gov.tw/public_index.asp?CatID=718>.
5. 余冬芳、鄒琴. 2007. 溫度對綠豆芽苗菜產量和營養成分的影響. 安徽農業科學誌. 35:3247-3248.
6. 林嘉慶. 2009. 探討添加三種不同的含硫鹽類以加強十字花科植物芽菜的抗癌活性. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北.
7. 林碧英、張瑜、林義章. 2011. 不同光質對豇豆幼苗光合特性和若干生理生化指標的影響. 熱帶作物學報. 32:235-239.
8. 柯侑婷. 2007. 十字花科蔬菜中硫配醣體含量與芥子酶特性之研究. 國立臺灣大學生物資源暨農學院園藝學研究所碩士論文. 臺北.
9. 翁瑞光、顏國欽. 1997. 綠豆芽、黃豆芽及蘿蔔嬰之抗氧化性研究. 中國農業化學會誌 35:661-670.
10. 高徳錚. 2011. 芽苗菜栽培技術. 農業委員會臺中區農業改良場. 臺中.
11. 高徳錚. 2011. 芽苗菜類水耕栽培. 農業委員會臺中區農業改良場. 臺中.
12. 崔瑾、徐志剛、邸秀茹. 2008. LED在植物設施栽培中的應用和前景. 農業工程學報 24:249-253.
13. 張立偉、劉世琦、張自坤、楊茹、楊曉建. 2010. 光質對蘿蔔芽苗菜營養品質的影響. 山東農業大學學報. 32:390-396.
14. 張立偉. 2010. 光質對三種芽苗菜生理特性及品質的影響. 山東農業大學園藝科學研究所碩士論文. 山東.
15. 張余洋、胡全凌、李漢霞. 2008. 不同處理對豌豆和蘿蔔芽苗菜生長、產量及品質的影響. 華中農業大學學報. 27:289-293.
16. 張明毅、程登國、連雅苹、方煒、陳杰廷. 2009. 不同光質對苗菜成長與抗氧化力之影響. 生物機電與農機科技論文發表會論文集. p.457-462
17. 張明毅、歐哲宇、鍾興穎、鄔家琪、方煒. 2010. 調控綠光比例對萵苣生長之影響. 生物機電與農機科技論文發表會論文集. p.392-387
18. 張國寶、胡玉清. 2008. 芽菜苗菜生產技術. 芽苗菜的含義. p.4-6. 金盾出版社.
19. 張喜寧、林瑞松. 1977. 綠豆芽生產之研究 : (一)物理加壓生產綠豆芽之生理研究. 中國園藝. 3:129-134.
20. 張瑞華. 2010. 光强和光質對植物光合特性的影響. 潍坊職業學院. 6:45-47.
21. 張萬萍、劉仁杰、江燕、萬常蕾. 2011. 影響幾種芽苗菜產量和品質的關鍵環境因子研究. 華北農學報. 26:214-219.
22. 張筱珮、蔡一蕙、黃詩芸、戴珮涵、陳雅珍、陳玉華. 2007. 臺灣省產新鮮及醃漬十字花科蔬菜內吲哚類硫代配醣體含量的探討. 臺灣營養學會雜誌 32:102-107.
23. 曹幸之、羅筱鳳. 2008. 蔬菜(Ⅱ). 芽菜及雜類. p.233-237. 復文書局. 臺南市.
24. 曾家澤. 2008. 蘿蔔嬰、綠花椰菜芽及油菜芽甲醇萃取物之抗氧化活性研究. 國立宜蘭大學食品科學研究所碩士論文. 宜蘭.
25. 劉乃森、劉福霞、胡群、鄭陽霞. 2009. 播種密度對蘿蔔芽苗菜產量及品質的影響. 北方園藝. 7:84-85.
26. 歐陽禹. 1994. 芽菜與豆. 種子選購要領. p.83. 青春出版社. 臺北市.
27. 鍾文霞. 2004. 十字花科蔬菜種子與植株硫配醣體成分之分析. 國立屏東科技大學食品科學研究所碩士論文. 屏東.
28. 鍾興穎、張明毅、鄔家琪、方煒. 2010. 光質與照光健化時間對蘿蔔嬰生長與生理之影響. 生物機電與農機科技論文發表會論文集. p.425-430
29. 顏國欽、危貴金. 1992. 十字花科蔬菜中硫配醣體含量之測定. 中國農業化學會誌 30:129-137.
30. 顏國欽、危貴金. 1993. 甘藍菜經不同加熱處理後其硫配醣體之變化. 中國農業化學會誌 31:378-386.
31. 顏國欽、危貴金. 1995. 數種十字花科蔬菜吲哚硫配醣體含量之探討. 中國農業化學會誌 3:33-38.
32. Aires, A., E. Rosa, and R. Carvalho. 2006. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J. Sci. Food Agri. 86:1512-1516.
33. Aires, A., E. Rosa, R. Carvalho, S. Haneklaus, and E. Schnug. 2007. Influence of nitrogen and sulfur fertilization on the mineral composition of broccoli sprouts. J. Plant Nutr. 30:1035-1046.
34. Antonious, G. F., M. Bomford, and P. Vincelli. 2009. Screening Brassica species for glucosinolate content. J. Environ. Sci. Heal. 44: 311-316.
35. Ashton, F.M. 1976. Mobilization of storage proteins of seeds. Annu. Rev. Plant Physiol. 27: 95-117.
36. Bellostas, N., P. Kachlicki, J.C. Sorensen, and H. Sorensen. 2007. Glucosinolate profiling of seeds and sprouts of B. oleracea varieties used for food. Scientia Hort. 114:234-242.
37. Bewley, J.D. and M. Black. 1994. Seeds: Physiology of development and germination. Plenum Press. New York.
38. Boardman, N.K. 1977. Comparative photosynthesis of sun and shade plants. Plant Physiol. 28:355-377.
39. Bones, A.M. and J.T. Rossiter. 1996. The myrosinase-glucosinolate system, it's organisation and biochemistry. Physiol. Plant. 97:194-208.
40. Brown, P.D., J.G. Tokuhisa, M. Reichelt, and J. Gershenzon. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471-481.
41. Charron, C.S. and C.E. Sam. 2004. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J. Amer. Soc. Hort. Sci. 129:321-330.
42. Chavan, J. and S. S. Kadam. 1989. Nutritional improvement of cereals by sprouting. Crit. Rev. Food Sci. Nutr. 28:401-437.
43. Chen, S. and E. Andreassonb. 2001. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39:743-758.
44. Ciska, E., J. Honke, and H. Kozlowska. 2008. Effect of light conditions on the contents of glucosinolates in germinating seeds of white mustard, red radish, white radish, and rapeseed. J. Agri. Food Chem. 56:9087-9093.
45. Conaway, C.C., S.M. Getahun, L.L. Liebes, D.J. Pusateri, D.K. Topham, M. Botero -Omary, and F.L. Chung. 2000. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr. Cancer 38:168-178.
46. Dandurand, L.M., R.D. Mosher, and G.R. Knudsen. 2000. Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can. J. Microbiol. 46:1051-1057.
47. Dam, N.M., L. Witjes, and A. Svatos. 2003. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol. 161:801-810.
48. Demir, Y. and İ. Kocacalişkan. 2001. Effects of NaCl and proline on polyphenol oxidase activity in bean seedlings. Biol. Plant. 44:607-609.
49. Demir, Y. and İ. Kocacalişkan. 2002. Effect of NaCl and proline on bean seedlings cultured in vitro. Biol. Plant. 45:597-599.
50. Fahey, J.W., Y. Zhang, and P. Talalay. 1997. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. 94:10367-10372.
51. Fahey, J.W., X. Haristoy, P.M. Dolan, T.W. Kensler, I. Scholtus, K.K. Stephenson, P. Talalay, and A. Lozniewski. 2002. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo pyrene-induced stomach tumors. P. Natl. Acad. Sci. USA. 99:7610-7615.
52. Fahey, J.W., K.L. Wade, K.K. Stephenson, and F.E. Chou. 2003. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography. J. Chromatogr. A. 996:85-93.
53. Folta, K.M., and S.A. Maruhnich. 2007. Green light: a signal to slow down or stop. J. Exp. Bot. 58:3099-3111.
54. Force, L.E., T.J. O’Hare, L.S. Wong, and D.E. Irving. 2007. Impact of cold storage on glucosinolate levels in seed-sprouts of broccoli, rocket, white radish and kohl-rabi. Postharvest Biol. Technol. 44:175-178.
55. Freeman, G. and N. Mossadeghi. 1972. Influence of sulphate nutrition on flavour components of three cruciferous plants: Radish (Raphanus sativus), cabbage (Brassica oleracea capitata) and white mustard (Sinapis alba). J. Sci. Food Agri. 23:387-402.
56. Gerard, E.E., G. Holden, J.D. Cohen, and G. Gardner. 2006. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J. Agri. Food Chem. 54:328-334.
57. Gigolashvili, T., R. Yatusevich, I. Rollwitz, M. Humphry, J. Gershenzon, and U.I. Flugge. 2009. The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21:1813-1829.
58. Grubb, C.D., and S. Abel. 2006. Glucosinolate metabolism and its control. Trends Plant Sci. 11:89-100.
59. Gu, Y., Q. Guo, L. Zhang, Z. Chen, Y. Han, and Z. Gu. 2012. Physiological and biochemical metabolism of germinating broccoli seeds and sprouts. J. Agri. Food Chem. 60:209-213.
60. Guo, R., G. Yuan, and Q. Wang. 2011. Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts. Food Chem. 129:1080-1087.
61. Guo, R.F., G.F. Yuan, and Q.M. Wang. 2012. Effect of NaCl treatments on glucosinolates metabolism in broccoli sprouts. J. Zhejiang Univ. Sci. 10:112-118.
62. Hanschen, F.S., S. Platz, I. Mewis, M. Schreiner, S. Rohn, and L.W. Kroh. 2012a. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems. J. Agri. Food Chem. 60:2231-2241.
63. Hanschen, F.S., S. Rohn, I. Mewis, M. Schreiner, and L.W. Kroh. 2012b. Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chem. 130:1-8.
64. Hare, P.D., W. A. Cress, and J. Van Staden. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21:535-553.
65. Hawkesford, M.J. 2003. Transporter gene families in plants: the sulphate transporter gene family-redundancy or specialization. Physiol. Plant 117:155-163.
66. Holst, B. and G. Williamson. 2004. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep. 21:425-447.
67. Hopkins, R. J., N. M. Van Dam, and J. J. Van Loon. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54:57-83.
68. Huseby, S., A. Koprivova, B.-R. Lee, S. Saha, R. Mithen, A.-B. Wold, G.B. Bengtsson, and S. Kopriva. 2013. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J. Exp. Bot. 15:257-266.
69. Jiao, D., M.C. Yu, J.H. Hankin, S.H. Low and F.L. Chung. 1998. Total isothiocyanate contents in cooked vegetables frequently consumed in Singapore. J. Agri. Food Chem. 46:1055-1058.
70. Johnson, A., A. Golden, D. Auld, and D. Sumner. 1992. Effects of rapeseed and vetch as green manure crops and fallow on nematodes and soil-borne pathogens. J. Nematol. 24:117.
71. Kang, J.Y., K.E. Ibrahim, and J.A. Juvik. 2006. Genetic and environmental variation of glucosinolate content in chinese cabbage. HortScience 41(6) :1382-1385.
72. Kestwal, R.M., J.C. Lin, D. Bagal-Kestwal, and B.H. Chiang. 2011. Glucosinolates fortification of cruciferous sprouts by sulphur supplementation during cultivation to enhance anti-cancer activity. Food Chem. 126:1164-1171.
73. Khattak, A.B., A. Zeb, M. Khan, N. Bibi, and M.S. Khattak. 2007. Influence of germination techniques on sprout yield, biosynthesis of ascorbic acid and cooking ability, in chickpea (Cicer arietinum L.). Food Chem. 103:115-120.
74. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004a. Green-light supplementation for enhanced lettuce growth under red and blue light-emitting diodes. HortScience 39:1617-1622.
75. Kim, H.H., G. Goins, R. Wheeler, and J. Sager. 2004b. A comparison of growth and photosynthetic characteristics of lettuce grown under red and blue light-emitting diodes (LEDs) with and without supplemental green LEDs. Acta. Hort. 659:467-475.
76. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. 94:691-697.
77. Kim, H.J., F. Chen, X. Wang, and J.H. Choi. 2006. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J. Agri. Food Chem. 54:7263-7269.
78. Kirkegaard, J., M. Sarwar, P. Wong, A. Mead, G. Howe, and M. Newell. 2000. Field studies on the biofumigation of take-all by Brassica break crops. Crop. Pasture. Sci. 51:445-456.
79. Kitazaki, S., K. Koga, M. Shiratani, and N. Hayashi. 2012. Growth enhancement of radish sprouts induced by low pressure O2 radio frequency discharge plasma irradiation. Jpn. J. Appl. Phys. 51:127-133.
80. Knipp, G. and B. Honermeier. 2006. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. J. Plant Physiol. 163:392-397.
81. Kojima, M. and K. Oawa. 1971. Studies on the effect of isothiocyanates and their analogues on microorganisms. (I) Effects of isothiocyanates on the oxygen uptake of yeasts. J. Ferment. Technol. 49:740-746.
82. Kopsell, D.A. and C.E. Sams. 2013. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Amer. Soc. Hort. Sci. 138:31-37.
83. Kushad, M.M., A.F. Brown, A.C. Kurilich, J.A. Juvik, B.P. Klein, M.A. Wallig, and E.H. Jeffery. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agri. Food Chem. 47:1541-1548.
84. La, G.X., P. Fang, Y.B. Teng, Y.J. Li, and X.Y. Lin. 2009. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.). J. Zhejiang Uni. Sci. 10:454-464.
85. Lee, S.J., J.K. Ahn, T.D. Khanh, S.C. Chun, S.L. Kim, H.M. Ro, H.K. Song, and I.M. Chung. 2007. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. J. Agri. Food Chem. 55:9415-9421.
86. Lopez-Berenguer, C., M.C. Martinez-Ballesta, C. Garcia-Viguera, and M. Carvajal. 2008. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci. 174:321-328.
87. Li, H., C. Tang, Z. Xu, X. Liu, and X. Han. 2012. Effects of Different Light Sources on the Growth of Non-heading Chinese Cabbage (Brassica campestris L.). J. Agri. Sci. 4:262-273.
88. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67:59-64.
89. Liang, H., Q. Yuan, and Q. Xiao. 2006. Effects of metal ions on myrosinase activity and the formation of sulforaphane in broccoli seed. J. Mol. Catal. B: Enzym. 43:19-22.
90. Lichtenthaler, H.K., and A.R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11:591-592.
91. Maekawa, K., T. Maeda, C. Oshima, T. Suzuki, and K. Oosawa. 2006. Effects of irradiated light intensity on the amount of antioxidants and antioxidative capacity in cruciferous sprouts. Hort. Res. 5:315-320.
92. Manici, L.M., L. Lazzeri, and S. Palmieri. 1997. In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J. Agri. Food Chem. 45:2768-2773.
93. Manici, L.M., L. Lazzeri, G. Baruzzi, O. Leoni, S. Galletti, and S. Palmieri. 2000. Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Manag. Sci. 56:921-926.
94. Martinez-Villaluenga, C., E. Penas, E. Ciska, M.K. Piskula, H. Kozlowska, C. Vidal-Valverde, and J. Frias. 2010. Time dependence of bioactive compounds and antioxidant capacity during germination of different cultivars of broccoli and radish seeds. Food Chem. 120:710-716.
95. Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2008. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiol. 49:664-670.
96. Mayton, H.S., C. Olivier, S.F. Vaughn, and R. Loria. 1996. Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86:267-271.
97. Mennicke, W., K. Gorler, G. Krumbiegel, D. Lorenz, and N. Rittmann. 1988. Studies on the metabolism and excretion of benzyl isothiocyanate in man. Xenobiotica 18:441-447.
98. Mewis, I., M. Schreiner, C.N. Nguyen, A. Krumbein, C. Ulrichs, M. Lohse, and R. Zrenner. 2012. UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol. 53:1546-1560.
99. Michel, H., M. Tellenbach, and A. Boschetti. 1983. A chlorophyll b-less mutant of Chlamydomonas reinhardii lacking in the light-harvesting chlorophyll ab-protein complex but not in its apoproteins. B. B. A. - Bioenergetics 725:417-424.
100. Mikkelsen, M.D., B.L. Petersen, E. Glawischnig, A.B. Jensen, E. Andreasson, and B.A. Halkier. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol. 131:298-308.
101. Myzak, M.C., P. Tong, W.M. Dashwood, R.H. Dashwood, and E. Ho. 2007. Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp. Bio. Med. 232:227-234.
102. Norsworthy, J.K., L. Brandenberger, N.R. Burgos, and M. Riley. 2005. Weed suppression in Vigna unguiculata with a spring-seeded brassicaceae green manure. Crop Prot. 24:441-447.
103. Oh, M.M. and C.B. Rajashekar. 2009. Antioxidant content of edible sprouts: effects of environmental shocks. J. Sci. Food Agri. 89:2221-2227.
104. Oh, E., S. Yamaguchi, Y. Kamiya, G. Bae, W. Chung, and G. Choi. 2006. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis thaliana. Plant J. 47:124-139.
105. Olerlemans, K., D.M. Barrett, C.B. Suades, R. Verkerk, and M. Dekker. 2006. Thermal degradation of glucosinolates in red cabbage. Food Chem. 95:19-29.
106. Palaniswamy, U., R. McAvoy, and B. Bible. 1997. Supplemental light before harvest increases phenethyl isothiocyanate in watercress under 8-hour photoperiod. HortScience 32:222-223.
107. Pang, Q., J. Guo, S. Chen, Y. Chen, L. Zhang, M. Fei, S. Jin, M. Li, Y. Wang, and X. Yan. 2012. Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant Soil 355:363-374.
108. Parks, B.M., K.M. Folta, and E.P. Spalding. 2001. Photocontrol of stem growth. Curr. Opin. Plant Biol. 4:436-440.
109. Pereira, F.M.V., E. Rosa, J.W. Fahey, K.K. Stephenson, R. Carvalho, and A. Aires. 2002. Influence of temperature and ontogeny on the Levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agri. Food Chem. 50:6239-6244.
110. Perez-Balibrea, S., D.A. Moreno, and C. Garcia-Viguera. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. J. Sci. Food Agri. 88:904-910.
111. Perez-Balibrea, S., D.A. Moreno, and C. Garcia-Viguera. 2010. Glucosinolates in broccoli sprouts (Brassica oleracea var. italica) as conditioned by sulphate supply during germination. J. Food Sci. 75:673-677.
112. Perez-Balibrea, S., D.A. Moreno, and C. Garcia-Viguera. 2011a. Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chem. 129:35-44.
113. Perez-Balibrea, S., D.A. Moreno, and C. Garcia-Viguera. 2011b. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem. 125:348-354.
114. Petersen, J., R. Belz, F. Walker, and K. Hurle. 2001. Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron. J. 93:37-43.
115. Porra, R.J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73:149-156.
116. Potter, M.J., V.A. Vanstone, K.A. Davies, and A.J. Rathjen. 2000. Breeding to increase the concentration of 2-phenylethyl glucosinolate in the roots of Brassica napus. J. Chem. Ecol. 26:1811-1820.
117. Rangkadilok, N., M.E. Nicolas, R.N. Bennett, D.R. Eagling, R. Robert, and P.W. Taylor. 2004. The effect of sulfur fertilizer on glucoraphanin levels in broccoli (B. oleracea L. var. italica) at different growth stages. J. Agri. Food Chem. 52:2632-2639.
118. Rosa, E., F.M.V. Pereira, A. Aires, and R. Carvalho. 2007. Effects of post-harvest storage conditions on the levels of glucosinolates in broccoli sprouts (Brassica oleracea var. italica) grown under different temperature regimes. J. Hort. Sci. Biotechnol. 82:974-978.
119. Rukiye, T. and K. Sebnem. 1993. Effects of proline and glycinebetaine on growth and some internal solute changes of cultured tomato embryos under saline conditions. Turk. J. Bot. 17:57-64.
120. Saebo, A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tiss. Org. 41:177-185.
121. Schagerl, M. and B. Muller. 2006. Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J. Plant Physiol. 163:709-716.
122. Schonhof, I., H.P. Klaring, A. Krumbein, and M. Schreiner. 2007. Interaction between atmospheric CO2 and glucosinolates in broccoli. J. Chem. Ecol. 33:105-114.
123. Shapiro, T.A., J.W. Fahey, K.L. Wade, K.K. Stephenson, and P. Talalay. 1998. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidem. Biomar. 7:1091- 1100.
124. Stroeher, V., J.G. Boothe, and A.G. Good. 1995. Molecular cloning and expression of a turgor-responsive gene in Brassica napus. Plant Mol. Biol. 27:541-551.
125. Świeca, M., U. Gawlik-Dziki, D. Kowalczyk, and U. Złotek. 2012. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Scientia Hort. 140:87-95.
126. Taiz, L. and E. Zeiger. 2006. Plant Physiology. Sinauer Associate, Inc. U.S.A.
127. Tiedink, H.G., C.E. Malingre, L.W. Van Broekhoven, W.M. Jongen, J. Lewis, and G.R. Fenwick. 1991. Role of glucosinolates in the formation of N-nitroso compounds. J. Agri. Food Chem. 39:922-926.
128. Tsao, R., C.J. Peterson, and J.R. Coats. 2002. Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects. B.M.C. Ecol. 2:5.
129. Van Etten, C.H., M.E. Daxenbichler, W.F. Kwolek, and P.H. Williams. 1979. Distribution of glucosinolates in the pith, cambial-cortex, and leaves of the head in cabbage, Brassica oleracea L. J. Agri. Food Chem. 25:487-495.
130. Vaughn, S.F., D.E. Palmquist, S.M. Duval, and M.A. Berhow. 2009. Herbicidal activity of glucosinolate-containing seedmeals. Weed Sci. 54:743-748.
131. Vig, A.P., G. Rampal, T.S. Thind, and S. Arora. 2009. Bio-protective effects of glucosinolates–A review. LWT -Food Sci. Technol. 42:1561-1572.
132. Wadleigh, R.W. and S.J. Yu. 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol. 14:1279-1288.
133. Wang, H., G. Cao, and L. Ronald. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45:304-309.
134. Wei, J., H. Miao, and Q. Wang. 2011. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts. Scientia Hort. 129:535-540.
135. Wheeler, G.L., M.A. Jones, and N. Smirnoff. 1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393:365-369.
136. Williams, D.J., C. Critchley, S. Pun, S. Nottingham, and T.J. O’Hare. 2008. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Phytochemistry 69:2765-2773.
137. Wu, M.C., C.Y. Hou, C.M. Jiang, Y.T. Wang, C.Y. Wang, H.H. Chen, and H.M. Chang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101:1753-1758.
138. Xu, M.J., J.F. Dong, and M.Y. Zhu. 2005. Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. J. Sci. Food Agri. 85:943-947.
139. Yan, X. and S. Chen. 2007. Regulation of plant glucosinolate metabolism. Planta 226:1343-1352.
140. Yang, J., Z. Zhu, and J. Gerendas. 2009. Interactive effects of phosphorus supply and light intensity on glucosinolates in pakchoi (Brassica campestris L. ssp. chinensis var. communis). Plant Soil. 323:323-333.
141. Yen, G.C. and Q.K. Wei. 1993. Myrosinase activity and total glucosinolate content of cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. J. Sci. Food Agri. 61:471-475.
142. Yuan, G., X. Wang, R. Guo, and Q. Wang. 2010. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 121:1014–1019.
143. Zhao, F., E.J. Evans, P.E. Bilsborrow, and J.K. Syers. 1994. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L.). J. Sci. Food Agri. 64:295-304.
144. Zhu, B., J. Yang, and Z.J. Zhu. 2013. Variation in glucosinolates in pak choi cultivars and various organs at different stages of vegetative growth during the harvest period. J. Zhejiang Univ. Sci. 30:574-580.
145. Zielinski, H., M. Piskula, and H. Kozlowska. 2005. Biologically active compounds in Cruciferae sprouts and their changes after thermal treatment. Pol. J. Food Nutr. Sci. 14:375.
146. Zsolnai, T. 1966. Antimicrobial effect of thiocyanates and isothiocyanates. Arztl. Forsch. 16:870-876.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60680-
dc.description.abstract青花菜(Brassica oleracea var. italica)芽含有植化素硫配醣體(glucosinolate),且其濃度較花球高。本研究於不同溫度、光照、養液及逆境下栽培青花菜芽,綜合單位面積產量及植化素濃度,建立青花菜芽之最適栽培條件。
黑暗栽培方面,青花菜芽於25/25℃下,以種子密度2、2.5及3 g•45 cm-2栽培,其中產量及硫配醣體濃度最佳者為2.5 g•45 cm-2。此密度於週期16 hr/8 hr下,施用變溫25/20℃、25/25℃、28/28℃及30/25 ℃栽培,以25/25℃於第六天採收最佳,可採收硫配醣體濃度860 μmol•100 g -1FW之青花菜芽25.9 g•45 cm-2。
光照栽培方面,於25/25℃及光強度200 μmol•m-2•s-1之白光發光二極體(Light Emitting Diode, LED)下,以種子密度0.5、1、1.5及2 g•45 cm-2栽培青花菜芽,其中最佳者為1 g•45 cm-2。以此密度於日夜溫25/20℃、23/23℃、25/25℃、28/28℃及30/25℃下栽培青花菜芽,最佳日夜溫為30/25℃。繼於30/25℃下以光強度100、200、300及400 μmol•m-2•s-1之白光LED栽培,其中300 μmol•m-2•s-1處理於第五天採收最佳,可得最佳硫配醣體濃度1208 μmol•100 g -1FW之青花菜芽8.28 g•45 cm-2。接著以種子密度2.5•45 cm-2及日夜溫26/26℃,於各不同低光度之紅光、藍光、綠光、紅藍光、紅綠光、藍綠光及紅藍綠光LED下栽培,其中25 μmol•m-2•s-1之綠光、65 μmol•m-2•s-1之紅綠光及80 μmol•m-2•s-1之紅藍光最佳,分別可採收青花菜芽19.7 g•45 cm-2、20.6 g•45 cm-2及20.2 g•45 cm-2,其硫配醣體濃度分別為799.1、908.1及804.25 μmol•100 g -1FW。
綠化栽培方面,以種子密度2.5 g•45 cm-2及日夜溫25/25℃,先於黑暗中栽培4-5天,再移入不同低光度之綠光、紅綠、紅藍光LED及光強度300 μmol•m-2•s-1之白光下綠化1-2天,其中紅藍光及白光最適用於綠化,各可採收青花菜芽21.5 g•45 cm-2及20.8 g•45 cm-2,硫配醣體濃度分別為950.7及912.8 μmol•100 g -1FW。
於青花菜芽黑暗栽培4天後綠化1天之全程期間,施以25/25℃及高光照500 μmol•m-2•s-1之白光LED、或低溫4℃及300 μmol•m-2•s-1之白光LED、或25/25℃之ultraviolet光等三種處理,其產量及硫配醣體濃度皆與對照組無顯著差異。繼於25/25℃下黑暗栽培4天後以300 μmol•m-2•s-1之白光LED綠化,於全程期間處理25、50、75及100 mM NaCl皆可顯著增加約50%產量,但50 mM NaCl使硫配醣體濃度之損失較少;50 mM蔗糖(sucrose)及10 mM脯胺酸(proline)則可增加硫配醣體濃度約27%。而於綠化栽培全程期間上壓75、115及155 g•45 cm-2重物,以75 g•45 cm-2最佳,可採收硫配醣體濃度1012 μmol•100 g-1 FW之青花菜芽20.8 g•45 cm-2。綜合以上結果,青花菜芽先以2.5•45 cm-2密度及50 mM NaCl及50 mM蔗糖溶液栽培,上壓75 g•45 cm-2重物於25/25℃及黑暗下,再以300 μmol•m-2•s-1之白光LED綠化1天,其產量可達24.8 g•45 cm-2,與黑暗栽培6天間無顯著差異,且分別顯著提升64%硫配醣體濃度及90%抗壞血酸濃度至1410 μmol•100 g-1 FW與1030 mg•L-1。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T10:25:50Z (GMT). No. of bitstreams: 1
ntu-102-R00628115-1.pdf: 7107704 bytes, checksum: 416b2c7556990118997576e906b46670 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅰ
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅱ
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅲ
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅴ
第一章 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
第二章 前人研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
一、芽菜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
二、硫配醣體
(一)其降解作用型式及作用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
(二)對病蟲害之生物防治作用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
三、影響十字花科植物硫配醣體及植化素濃度之因素
(一)芽菜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 9
(二)食用部位及成熟植株. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
四、研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
第三章 材料與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
一、試驗材料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
二、試驗方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
(一)試驗
(1)黑暗栽培青花菜芽試驗. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 28
(2)光照栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 30
(3)不同光源栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 30
(4)綠化栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 31
(5)逆境栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 31
(6)不同溶液栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31
(7)青花菜芽之上壓重物試驗. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 32
(8)最適綠化條件栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . .. . . . . . 32
(9)最適綠化條件栽培青花菜芽之採後處理試驗. . . . . . . . . . . . .. . . . . . 32
(10)量產青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 33
(二)調查項目
Ⅰ. 植株生長調查. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Ⅱ. 植化素及糖度測定
(1)總硫配醣體濃度測定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
(2)異硫氰酸酯濃度測定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
(3)抗壞血酸濃度測定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(4)葉綠素濃度測定.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 39
(5)類胡蘿蔔素濃度測定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(6)糖度測定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 39
(三)統計分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
第四章 結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
一、黑暗栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
二、光照栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
三、不同光源栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
四、綠化栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
五、逆境栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
六、不同溶液栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54
七、青花菜芽之上壓重物試驗. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
八、最適綠化條件栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
九、最適綠化條件栽培青花菜芽之採後處理試驗. . . . . . . . . . . . . . . . . . . . . . . . 60
十、量產青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
第五章 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
一、黑暗栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
二、光照栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
三、不同光源栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 102
四、綠化栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
五、逆境栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 107
六、不同溶液栽培青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
七、青花菜芽之上壓重物試驗. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
八、最適綠化條件栽培青花菜芽試驗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
九、最適綠化條件栽培青花菜芽之採後處理試驗. . . . . . . . . . . . . . . . . . . . . . .114
十、量產青花菜芽試驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
第六章 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
附錄
dc.language.isozh-TW
dc.subject光質zh_TW
dc.subject脯胺酸zh_TW
dc.subject蔗糖zh_TW
dc.subject光強度zh_TW
dc.subject溫度zh_TW
dc.subject異硫氰酸酯(鹽)zh_TW
dc.subject氯化鈉zh_TW
dc.subjectsucroseen
dc.subjecttemperatureen
dc.subjectlight intensityen
dc.subjectlight qualityen
dc.subjectNaClen
dc.subjectisothiocyanateen
dc.subjectprolineen
dc.title栽培環境對青花菜芽產量及硫配醣體濃度之影響zh_TW
dc.titleEffect of Cultural Environments on Yield and the Glucosinolate Concentrations in Broccoli (Brassica oleracea L. var. italica) Sproutsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳榮芳,楊雯如,林淑怡
dc.subject.keyword異硫氰酸酯(鹽),溫度,光強度,光質,氯化鈉,蔗糖,脯胺酸,zh_TW
dc.subject.keywordisothiocyanate,temperature,light intensity,light quality,NaCl,sucrose,proline,en
dc.relation.page132
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved