請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60670
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張建成(Chien-Cheng Chang),朱錦洲(Chin-Chou Chu) | |
dc.contributor.author | Che-Kang Chang | en |
dc.contributor.author | 張哲綱 | zh_TW |
dc.date.accessioned | 2021-06-16T10:25:28Z | - |
dc.date.available | 2015-08-20 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | C. Hao, T. Varghese, S. Peter, & Zagzebski, J. A. (2009). Ultrasound frame rate
requirements for cardiac elastography: Experimental and in vivo results. Ultrasonics, 49(1), 98-111. C. Simon, P. VanBaren, & Ebbini, a. E. S. (1998). Two-dimensional temperature estimation using diagnostic ultrasound. IEEE transactions on ultrasonics, 45(4), 1088-1099. C.J. Simon, D.E. Dupuy , & W.W. Mayo-Smith. (2005). Microwave ablation: principles and applications. Radiographics, 25(1), S69-83. Executive Yuan, R. O. C. (2012). 2011 Statistics of causes of death. Department of Health. G. Abbas, A. Pennathur, R.J. Landreneau, & Luketich, J. D. (2009). Radiofrequency and microwave ablation of lung tumors. Journal of Surgical Oncology, 100(8), 645-650. I. Winkler , & Adam, D. (2011). Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions--in vitro and in vivo study. Ultrasound in Medicine & Biology, 37(5), 755-767. J. Bamber, & Hill, C. (1979). Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound in medicine&biology, vol.5, p.149. J. Mclaughlan, I. Rivens, & Haar, G. (2007). Cavitation detection in ex vivo bovine liver tissue exposed to high-intensity focused ultrasound (HIFU). IEEE Int Symp Biomed Imaging, 1124-1127. J. Ophir, S. Kaisar Alam, S. Brian, F. Kallel, E. Elisa, Thomas Krouskop, et al. (2002). Elastography imaging the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics, 299(4), 155-171. J. Ophir, S.K. Alam, B Garra, F Kallel, E Konofagou, Krouskop, T., et al. (1999). Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. In Proc. Instn. Mech. Engrs., Part H: Journal of Engineering in Medicine, 213, 203-233. J.Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, & Li, X. (1991). Elastographt:A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging, vol. 13,pp. 111-134. K. Shung, K. Smith, M. B. & Tsui, & W, B. M. (1992). Principles of medical imaging(San Diego: Academic Press). L. Wang, & He, D. C. (1990). A new statistical approach for texture analysis. Photogrammetric Engng Remote Sensing, 56, 61-66. N.T. Sanghvil, F.J. Fry, R. Bihrle, R.S. Foster, M.H. Phillips, J. Syrus, et al. (1995). Microbubbles during tissue treatment using high intensity focused ultrasound. IEEE Ultrasonics Symposium, 2, 1571-1574. 60 O. Bonnefous. (1991). Device for measuring the speed of blood flows by ultrasonic echography at an increased measuring speed. Google Patents. R. Nasoni, T. Bowen, W. Connor, & Sholes, R. (1979). In vivo temperature dependence of ultrasound speed in tissue and its application to noninvasive temperature monitoring. Ultrasonic imaging, vol.1, p.34. R. Righetti, F. Kallel, R.J. Stafford, R.E. Price, T.A. Krouskop, J.D. Hazle, et al. (1999). Elastographic characterization of HIFU-induced lesions in canine livers. Ultrasound in Medicine & Biology, vol. 25, pp. 1099-1113. R. Seip, & Ebbini, E. S. (1995). Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound. IEEE transactions on biomedical enginerring, vol.42, pp.828-839. RJ. Stafford , F. Kallel, RE. Price , DM. Cromeens , TA. Krouskop , JD. Hazle , et al. (1998). Elastographic imaging of thermal lesions in soft tissue: a preliminary study in vitro. Ultrasound in Medicine and Biology, 24(29):1449-1458. RM. Lerner , KJ. Parker , & Hung., S. (1990). 'Sonoelasticity' images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med.&Biol., 16(3), 231-239. S. Mandarano, G. Mandarano, & Sim, J. H. (2009). The sonographer’s role in RFA therapy of liver lesions. Biomed Imaging Interv J, 5(1), e8. S. Siebers, M. Schwabe, U. Scheipers, C. Welp, J. Werner, & Ermert, H. (2004). Evaluation of ultrasonic texture and spectral parameters for coagulated tissue characterization. IEEE Ultrasonics Symposium, 3, 1804-1807. S.Nahum Goldberg. (2001). Radiofrequency tumor ablation: principles and techniques. European Journal of Ultrasound, 13(2), 129-147. T. Douglas, P. Daniel, E. Swetha, J. William, M. Steven, & Joseph F. Buell. (2008). Ultrasound monitoring of in vitro radio frequency ablation by echo decorrelation imaging. J Ultrasound Med, 27(12), 1685-1697. T. Hall, W. Svensson, J. Malin , Y. Zhu, von Behren, Spalding C, et al. (2003). Lesion size ratio for differentiating breast masses. IEEE Ultrason Symp, 2: 1247-1250. T. Hall, Y. Zhu, & Spalding, C. (2002). In vivo real-time freehand pal-pation imaging. Ultrasound Med Biol, 29(23):427- 435. T. Varghese, J. Zagzebski, U. Techavipoo, & Quan, C. (2007). Elastographic Imaging of Soft Tissue in Vivo. United States Patent. T. Varghese, J.A. Zagzebski, F.T. Lee, & R., J. (2002). Elastographic Imaging of thermal lesions in the liver in vivo following radiofrequency ablation:preliminary results. Ultrasound in Med. & Biol., Vol. 28, Nos. 11/12, pp. 1467-1473. 61 T. Varghese, J.A. Zagzebski, G. Frank, & E.L. Madsen. (2002). Elastographic Imaging Using a Handheld Compressor. ULTRASONIC IMAGING, 24,25- 35. W. Ning, Y. Wei, C. Lei, Z. Su, & C. Ya-zhu. (2007). Texture analysis of B-mode ultrasound images on tissue in radiofrequency ablation. Chinese Journal of Medical Imaging Technology, 23(21). Y. Yamakoshi , J. Sato , & T. Sato (1990). Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 37(32):45-53. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60670 | - |
dc.description.abstract | 肝癌的治療方法有很多種,射頻燒灼治療為近年來新興的一種局部消除療法,為了避免在治療時波及到周圍正常的組織,必須要藉由輔助系統來評估燒灼區域,超音波影像即為一種評估的醫學影像。由於燒灼過程中,氣泡的產生與假影效應,B-mode影像很難判斷出燒灼區域,並不適合用來做術後評估,因此Ophir 等學者便提出了彈
性影像。 彈性影像(Elastography)為一種藉由組織彈性的不同來形成的超音波影像,在過去的文獻中,並沒有特別提及超音波探頭的掃描方式,而腫瘤的生長位置不一,勢必會有需要改變掃描的角度才能掃描到腫瘤,因此本文探討探頭不同的掃描角度對於彈性影像會有何影響。 在實驗中,使用自動模式來燒灼,燒灼與冷卻時間各為12 分鐘。利用豬肝來模擬人體肝臟進行燒灼,掃描時,超音波探頭與燒灼電極會有一夾角,從90 度開始掃描,每減少10 度亦做掃描,掃描至角度等於30 度時。 實驗結果顯示,掃描角度會影響燒灼區的面積大小與面積誤差,角度越小,面積越大,但面積的誤差越小,角度小於40 度時,誤差約為10~20%;建議使用彈性影像時掃描角度低於40 度,燒灼面積的評估較為準確。 | zh_TW |
dc.description.abstract | Radiofrequency ablation(RFA) is an emerging therapy in recent years, RFA procedures are performed under image guidance,and ultrasound image is a medical image to assess the ablation lesion.Due to gas generation and shadow effect during ablation procedures,B-mode image can’t identify thermal leison learly.
Elastography is a non-invasive method in which stiffness or strain images of soft tissue are used to detect or classify tumors.Sometimes we need to change the position or angle of probe because tumors may appear randomly. Scanning position or angle of ultrasound probe does not specifically mention in the past literature,thus,we investigate the angle effect of elastography in this study. RFA experiment was performed on the liver of a pig,and RFA of the target tissue was performed for 12 min by raising the target temperature to 100°C at a 50-W power level.Acquiring elastography when the angle of scan plane and ablation probe changed from 30 to 90 degree. Accroding to the result,thermal lesion area increased when scanning angle is decreasing.Areas measured on pathology images were compared with areas measured on elastography,and the error of area between two images is about 10% as angle is less than 40 degress. Base on this study,to evaluate thermal lesion accurately,we recommend scanning angle less than 40 degrees | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:25:28Z (GMT). No. of bitstreams: 1 ntu-102-R00543053-1.pdf: 10695468 bytes, checksum: 91b9d920a4abbc152df7bf1ca8bbd1f2 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要... i
Abstract... ii 目錄... iii 圖引索... v 表引索... vii 第一章緒論... 1 1.1 前言... 1 1.2 研究背景... 2 1.3 文獻回顧... 4 1.4 研究目的... 6 1.5 論文架構... 6 第二章 理論基礎... 7 2.1 超音波原理及簡介... 7 2.1.1 聲波傳遞的基本原理... 7 2.1.2 超音波之反射與折射... 10 2.1.3 超音波之能量衰減... 12 2.2 超音波彈性影像成像原理及簡介... 13 2.2.1 彈性影像發展背景... 13 2.2.2 彈性影像成像原理... 13 2.2.3 互相關分析法... 16 2.3 射頻燒灼原理簡介... 17 2.4 簡單線性回歸分析與相關分析... 18 第三章 實驗材料與方法... 23 3.1 實驗系統架構... 23 3.2 絞肉團仿體與豬肝仿體燒灼實驗... 26 3.2.1 絞肉團仿體製作... 26 3.2.2 豬肝仿體製作... 26 3.2.3 實驗步驟... 28 3.2 實驗數據分析... 28 第四章 實驗結果與討論... 32 4.1 絞肉團仿體實驗... 32 4.2 豬肝燒灼實驗... 39 4.2.1 彈性影像結果... 39 4.2.2 彈性影像相關分析... 47 4.2.3 燒灼面積誤差分析... 50 4.3 實驗結果討論... 53 第五章 結論與未來展望... 56 5.1 結論... 56 5.2 未來展望... 57 參考文獻... 59 附錄... 62 | |
dc.language.iso | zh-TW | |
dc.title | 使用電極位移彈性影像評估組織燒灼面積:角度效應分析 | zh_TW |
dc.title | Using Electrode Displacement Elastography to Evaluate Tissue
Ablation : Analysis of Angle Effect | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 崔博翔,黃執中,張家歐 | |
dc.subject.keyword | 射頻燒灼治療,彈性影像,角度效應, | zh_TW |
dc.subject.keyword | RFA,elastography,angle effect, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 10.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。