請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60666完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊燿州(Yao-Joe Yang) | |
| dc.contributor.author | Po-Cheng Huang | en |
| dc.contributor.author | 黃柏承 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:25:19Z | - |
| dc.date.available | 2013-08-16 | |
| dc.date.copyright | 2013-08-16 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | [1] 張正華等人,《有機與塑膠太陽能電池》,五南圖書,台北市,2007
[2] BP Statistical Review of World Energy, June, 2013 [3] T. Juvonen, J. Harkonen and P. Kuivalainen, 'High Efficiency Single Crystalline Silicon Solar Cells,' Physica Scripta, vol. T101, pp.96-98, 2002. [4] P. H. Fang, L. Ephrath, and W. B. Nowak, 'Polycrystalline silicon films on aluminum sheets for solar cell application,' Applied Physics Letters, vol. 25, pp. 583-584, 1974. [5] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, 'Amorphous silicon solar cells deposited at high growth rate,' Journal of Non-Crystalline Solids, vol. 299-302, pp.1116-1122, 2002. [6] http://www.solar-i.com/know.html [7] B. Li, J. Liu, G. Xu, R. Lu, L. Feng, 'Development of pulsed laser deposition for CdS/CdTe thin film solar cells,' Applied Physics Letters, vol. 101, 153903, 2012. [8] Y. Hu, R. R. LaPierre, M. Li, K. Chen, and J. J. He, 'Optical characteristics of GaAs nanowire solar cells,' Journal of Applied Physics, vol. 112, 104311, 2012. [9] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, '19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,' Progress in Photovoltaics: Research and Application, vol. 16, pp. 235-239, 2008. [10] http://www.solarcellideas.com/2013/01/cdte-solar-cell.html [11] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. J. Heeger, ' Solution-processed small-molecule solar cells with 6.7% efficiency,' Nature Materials, vol.11, pp.44-48, 2011. [12] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, 'Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,' Advanced Functional Materials, vol. 15, pp1617-1622, 2005. [13] B. O'regan, M. Gratzel and P. Yang, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,' Nature, vol. 353, pp. 737-740, 1991. [14] L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras and P. J. Brock, 'Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes,' Applied Physics Letters, vol. 74, 1132, 1999. [15] A. J. Breeze, Z. Schlesinger, S. A. Carter and P. J. Brock, 'Charge transport in TiO2/MEH-PPV polymer photovoltaics,' Physical Review B, vol. 64, 125205, 2001. [16] http://www.chem.cmu.edu/groups/peteanu/res/res-01.html [17] G. Yu, J. Gao, J. C. Hummelen, F. Wudi and A. J. Heeger, 'Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,' Science, vol.270, pp. 1789-1791, 1995. [18] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, 'Solar cell efficiency tables (version 36),' Progress in Photovoltaics: Research and Applications, vol. 18, pp. 346-352, 2010. [19] L. Vayssieres, K. Keis, S.E. Lindquist, and A. Hagfeldt, 'Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,' The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352, 2001. [20] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, 'Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,' Angewandte Chemie International Edition, vol. 42, pp. 3031–3034, 2003. [21] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P.Yang, 'General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds,' Nano Letters, vol. 5, pp. 1231-1236, 2005. [22] Y. Tak, and K. Yong, 'Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method,' The Journal of Physical Chemistry B, vol. 109, pp. 19263-19269, 2005. [23] S. Xu, C. Lao, B. Weintraub and Z. L. Wang, 'Density-controlled Growth of Aligned ZnO Nanowire Arrays by Seedless Chemical Approach on Smooth Surfaces,' Journal of Materials Research, vol. 23, pp. 2072-2077, 2008. [24] X. Wen, W. Wu, Y. Ding and Z. L. Wang, 'Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing,' Journal of Materials Chemistry, vol. 22, pp. 9469-9476, 2012. [25] L. Wang, D. Tsan, B. Stoeber and K. Walus, 'Substrate-Free Fabrication of Self-Supporting ZnO Nanowire Arrays,' Advanced Materials, vol. 24, pp. 3999–4004, 2012. [26] K. Keis, E. Magnusson, H. Lindstrom, S. Lindquist and A. Hagfeldt, 'A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes,' Solar Energy Materials & Solar Cells, vol. 73, pp. 51–58, 2002. [27] Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe and Guozhong Cao, 'Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells,' Angewandte Chemie International Edition, vol. 47, 2402-2406, 2008. [28] K. Kakiuchi, M. Saito and S. Fujihara, 'Fabrication of ZnO films consisting of densely accumulated mesoporous nanosheets and their dye-sensitized solar cell performance,' Thin Solid Films, vol. 516, pp. 2026–2030, 2008. [29] M. Law, L. Greene, J. C. Johnson, R. Saykally and P. Yang, 'Nanowire dye-sensitized solar cells,' Nature Materials, vol. 4, pp. 455 – 459, 2005. [30] C. Xu, J. Wu, U. V. Desai and D. Gao, 'Multilayer Assembly of Nanowire Arrays for Dye-Sensitized Solar Cells,' Journal of the American Chemical, vol. 133, pp. 8122-8125, 2011. [31] S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos and H. J. Sung, 'Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell,' Nano Letters, vol.11, pp. 666–671, 2011. [32] W. Chen, H. Zhang, I. M. Hsing and S. Yang, 'A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcination,' Electrochemistry Communications, vol. 11, pp. 1057-1060, 2009. [33] S. Yodyingyong, Q. Zhang, K. Park, C. S. Dandeneau, X. Zhou, et al., 'ZnO nanoparticles and nanowire array hybrid photoanodes for dyesensitized solar cells,' Applied Physics Letters, Vol. 96, pp. 073115, 2010. [34] F. Xu, M. Dai, Y. Lu and L, Sun, 'Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells,' The Journal of Physical Chemistry C, vol. 114, pp. 2776–2782, 2010. [35] L. Lu, R. Li, T. Peng, K. Fan and K. Dai, 'Effects of rare earth ion modifications on the photoelectrochemical properties of ZnO-based dye-sensitized solar cells,' Renewable Energy, vol. 36, pp. 3386-3393, 2011. [36] R. Liu, W. D. Yang, L. S. Qiang and H. Y. Liu, 'Conveniently fabricated heterojunction ZnO/TiO2 electrodes using TiO2 nanotube arrays for dye-sensitized solar cells,' Journal of Power Sources, vol. 220, pp. 153-159, 2012. [37] G. Yang, C. Miao, Z. Bu, Q. Wang and W. Guo, 'Seed free and low temperature growth of ZnO nanowires in mesoporous TiO2 film for dye-sensitized solar cells with enhanced photovoltaic performance,' Journal of Power Sources, vol. 233, pp. 74-78, 2013. [38] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, 'Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,' Nano Letters, vol. 6, pp.215-218, 2006. [39] J. B. Baxter and E. S. Aydil, 'Nanowire-based dye-sensitized solar cells,' Applied Physics Letters, vol. 86, 053114, 2005. [40] S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, 'Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires,' Advanced Functional Materials, vol. 18, pp2411-2418, August, 2008. [41] M. Gratzel, 'Photoelectrochemical cells,' Nature, vol. 414, pp. 338-344, November, 2001. [42] V. Mylnikov and A. Ternin, 'Dye sensitized photo-response in organic semiconductors,' Molecular Physics, vol. 8, pp. 387-399, 1964. [43] A. Terenin and I. Akimov, 'Some Experiments on the Photosensitization Mechanism of Semiconductors by Dyes,' The Journal of Physical Chemistry, vol. 69, pp. 730-738, 1965. [44] M. Gratzel, 'Solar energy conversion by dye-sensitized photovoltaic cells,' Inorganic Chemistry, vol.44, pp. 6841-6851, 2005. [45] M. Gratzel, 'Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,' Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 3-14, 2004. [46] S. A. Haque, Y. Tachibana, D. R. Klug and J. R. Durrant, 'Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias,' The Journal of Physical Chemistry B, vol. 102, pp.1745-1749, 1998. [47] A. Hagfeldt and M. Gratzel, 'Light-induced redox reactions in nanocrystalline systems,' Chemical Reviews, vol.95, pp. 49-68, 1995. [48] K. Kalyanasundaram and M. Graatzel, 'Applications of functionalized transition metal complexes in photonic and optoelectronic devices,' Coordination Chemistry Reviews, vol. 77, pp. 347-414, 1998. [49] http://pveducation.org/ [50] N. Koide, A. Islam , Y. Chiba and L. Han, 'Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit,' Journal of Photochemistry and Photobiology A: Chemistry, vol.182, pp. 296-305, 1998. [51] A. J. Bard, and L. R. Faulkner, 'Electrochemical methods: fundamentals and applications, 2nd ed.,' Wiley, 2001. [52] A. R. Jha, 'Solar Cell Technology and Applications, 1st ed.,' Taylor & Francis, 2009. [53] A. Hagfeldt and M. Gratzel, 'Molecular Photovoltaics,' Accounts of Chemical Research, vol.33, pp. 269-277, 1999. [54] T. Marinado, K. Nonomura, J. Nissfolk, M. K. Karlsson, D. P. Hagberg, L. Sun, S. Mori and A. Hagfeldt, 'How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes,' Langmuir, vol. 26, pp. 2592–2598, 2010. [55] D. L. Pulfrey, 'Fill factor of solar-cells,' Solid-State Electronics, vol.21, pp.519-520, 1978. [56] http://www3.nd.edu/~pkamat/pdf/ipce.pdf [57] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Gratzel, 'Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,' The Journal of Physical Chemistry B, vol. 107, pp. 8981-8987, 2003. [58] A. Lasia, 'Electrochemical impedance spectroscopy and its applications,' Modern Aspects of Electrochemistry, vol.32, pp. 143-248, 1999. [59] Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho and H. Imai, 'Characteristics of High Efficiency Dye-Sensitized Solar Cells,' The Journal of Physical Chemistry B, vol.110, pp. 25210-25221, 2006. [60] J. Bisquert, 'Theory of the impedance of electron diffusion and recombination in a thin layer,' Journal of Physical Chemistry B, vol.106, pp. 325-333, 2002. [61] M.Adachi, M.Sakamoto, J. T. Jiu, Y. Ogata and S. Isoda, 'Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy,' Journal of Physical Chemistry B, vol. 110, pp. 13872-13880, 2006. [62] R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, 'Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,' Electrochimica Acta, vol. 47, pp. 4213-4225, 2002. [63] F. Fabregat-Santiago, J. Garcia-Canadas, E. Palomares, J. N. Clifford, S. A. Haque, J. R. Durrant, G. Garcia-Belmonte and J. Bisquert, 'The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings,' Journal of Applied Physics, vol. 96, 6903, 2004. [64] A. Hauch and A. Georg, 'Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells,' Electrochimica Acta, vol. 46, pp. 3457–3466, 2001. [65] Pearson’s Handbook of Crystallographic Data, 4795. [66] http://zh.wikipedia.org/wiki/File:Wurtzite_polyhedra.png [67] H. L. Hartnagel, A. L. Dawar and A. K. Jain, 'Semiconducting Transparent Thin Films, 1st ed.,' Taylor & Francis, 1995. [68] 'Intrinsic Properties of Group Ⅳ elements and Ⅲ-Ⅴ, Ⅱ-Ⅵ Compounds,' Numerical Data and Functional Relationships in Science and Technology, vol. 22, 1987. [69] Y.Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu and T. Yao, 'Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,' Journal of Applied Physics, vol. 84, 3912, 1998. [70] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, 'Self-powered nanowire devices,' Nature Nanotechnology, vol. 5, pp. 366-373, 2010. [71] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, 'Fabrication and ethanol sensing characteristics of ZnO nanowiregas sensors,' Applied Physics Letters, vol. 84, 3654, 2004. [72] A. Fulati, S. M. U. Ali, M. H. Asif, N. Alvi, M. Willander, C. Brannmark, P. Stralfors, S. I. Borjesson, F. Elinder and B. Danielsson, 'An intracellular glucose biosensor based on nanoflake ZnO,' Sensors and Actuators: B, vol. 150, pp. 673–680, 2010. [73] C. Y. Lu, S. P. Chang, S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. Z. Chiou and I. C. Chen, 'A lateral ZnO nanowire UV photodetector prepared on a ZnO:Ga/glass template,' Semiconductor Science and Technology, vol. 24, 075005, 2009. [74] G. C. Yi, C. Wang and W. I. Park, 'ZnO nanorods: synthesis, characterization and applications,' Semiconductor Science and Technology, vol. 20, pp. S22–S34, 2005. [75] E. W. Petersen, E. M. Likovich, K. J. Russell, and V. Narayanamurti, 'Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles,' Nanotechnology, vol. 20, 405603, 2009. [76] P. Yang and C. M. Lieber, 'Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites,' Journal of Materials Research, vol. 11, pp. 2981-2996. [77] http://www.materialsnet.com.tw/DocPrint.aspx?id=10559 [78] P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe and H. Takasu, 'Nucleation and growth of ZnO on (1 1 2 0) sapphire substrates using molecular beam epitaxy,' Journal of Crystal Growth, vol. 227-228, pp. 911-916, 2001. [79] J. H. Kim, S. K. Han, S. K. Hong, J. W. Lee, J. Y. Lee, J. H.Song, S. I. Hong and T. Yao, 'Growth of epitaxial ZnO films on Si(111) substrates with Cr compound buffer layer by plasma-assisted molecular beam epitaxy,' Journal of Crystal Growth, vol. 312, pp.2190-2195, 2010. [80] Sun IgHong a, TakafumiYao M. Ohyama, H. Kozuka and T. Yoko, 'Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,' Thin Solid Films, vol. 306, pp. 78-85, 1997. [81] J. S. Jie, G. Z. Wang, Q. T. Wang, Y. M. Chen, X. H. Han, X. P. Wang and J. G. Hou, 'Synthesis and characterization of aligned ZnO nanorods on porous aluminum oxide Template,' The Journal of Physical Chemistry B, vol. 108, pp. 11976-11980, 2004. [82] D. Pradhan and K. T. Leung, 'Controlled Growth of Two-Dimensional and One-Dimensional ZnO Nanostructures on Indium Tin Oxide Coated Glass by Direct Electrodeposition,' Langmuir, vol. 24, pp. 9707-9716, 2008. [83] L. Spanhel and M. A. Anderson, 'Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids,' Journal of American Chemical Society, vol. 113, pp. 2826–2833, 1991. [84] C. Pacholski, A. Kornowski and H. Weller, 'Self-Assembly of ZnO: From Nanodots to Nanorods,' Angewandte Chemie, vol. 41, pp. 1188-1191, 2002. [85] R. W. Nosker and P. Mark, 'Polar surfaces of wurtzite and zincblende lattices,' Surface Science, vol. 19, pp. 291-317, 1970. [86] S. Yamabi and H. Imai, 'Growth conditions for wurtzite zinc oxide films in aqueous solutions,' Journal of Materials Chemistry, vol. 12, pp. 3773-3778, 2002. [87] C. H. Ku and J. J. Wu, 'Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells,' Applied Physics Letters, vol. 91, 093117, 2007 [88] N. A. Anderson, X. Ai and T. Lian, 'Electron Injection Dynamics from Ru Polypyridyl Complexes to ZnO Nanocrystalline Thin Films,' Journal of Physical Chemistry B, vol. 107, pp. 14414-14421, 2003. [89] T. Ihn, 'Semiconductor nanostructures: quantum states and electronic transport, 1st ed.,' Oxford, 2009. [90] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos and M. Gratzel, 'Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium( 11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Ti02 Electrodes,' Journal of American Chemical Society, vol. 115, pp. 6382–6390, 1993. [91] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel, 'Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,' Journal of American Chemical Society, vol. 127, pp. 16835-16847, 2005. [92] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, 'Dye-sensitized solar cells with conversion efficiency of 11.1%,' Japanese Journal of Applied Physics, vol. 45, pp. L638-L640, 2006. [93] P. Wang, C. Klein, J. E. Moser, R. Humphry-Baker, N. L. Cevey-Ha, R. Charvet, P. Comte, S. M. Zakeeruddin and M. Gratzel, 'Amphiphilic Ruthenium Sensitizer with 4,4’-Diphosphonic Acid-2,2’-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells,' The Journal of Physical Chemistry B, vol. 108, 17553-17559, 2004. [94] I. Jerman, V. Jovanovski, A. Šurca Vuk, S. B. Hočevar, M. Gaberšček, A. Jesih and B. Orel, 'Ionic conductivity, infrared and Raman spectroscopic studies of 1-methyl-3-propylimidazolium iodide ionic liquid with added iodine,' Electrochimica Acta, vol. 53, pp. 2281-2288, 2008. [95] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, 'Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, ' Science, vol. 334, pp. 629-632, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60666 | - |
| dc.description.abstract | 在本研究中,我們利用化學水溶液法(Chemical solution method)合成氧化鋅奈米結構,運用化學水溶液法製程低溫、簡單的特性,簡便的合成氧化鋅材料,並藉由調配不同有機胺的成分比例,達成不同形貌的氧化鋅奈米結構,其中包含氧化鋅奈米線(ZnO nanowire)、無基板氧化鋅奈米線薄膜(Substrate-free ZnO nanowire film)、星狀氧化鋅奈米顆粒(Star-like ZnO nanoparticles),我們分別探討反應時間對各結構的成長厚度及型態的影響。材料特性鑑定方面,透過SEM、X光繞射分析、氮氣等溫吸附等方法,來探討三種不同形貌的氧化鋅奈米結構、結晶方向、比表面積及孔隙率等。本研究也分別利用上述三種氧化鋅奈米結構,結合商用N719染料、I-/I3-碘系電解液及鉑相對電極組裝成染料敏化太陽能電池,經太陽能電池特性測量,氧化鋅奈米線工作電極擁有最高1.9%的光電轉換效率,並產生8.54mA/cm2的短路電流,同時也分析比較各結構之差異。入射光子-電流轉換效率(IPCE)方面,測得最高IPCE轉換效率為26.85%。本研究也從電化學交流阻抗圖譜去分析各結構對於染料敏化太陽能電池的阻抗影響,透過等效模型來驗證氧化鋅在電子擴散速率上的優勢。 | zh_TW |
| dc.description.abstract | In this work, we present three ZnO nanostructures synthesized by chemical solution method. Solution approaches to synthesize ZnO nanostructures are appealing because of their low growth temperature and good potential for scaling-up. By modifying different Amine ingredients, three types of ZnO nanostructures were grown, including ZnO nanowire array, substrate-free ZnO nanowire film, and Star-like ZnO nanoparticles. The influences of reaction times on the thickness and morphology of nanostructures were also presented. The XRD patterns showing highly diffraction intensity in z-direction ZnO nanowire were observed. The development of dye-sensitized solar cell utilized these nanostructures as photo anodes were presented. The dye-sensitized solar cell comprises a FTO glass with dense ZnO nanostructures as working electrode, a platinized FTO glass as counter electrode, N719-based dye, and I-/I3- liquid electrolyte. The dye-sensitized solar cell fabricated using such nanostructures yields a highest power conversion efficiency of 1.9% and the IPCE photo-current efficiency is up to 26.85%. Electrochemical impedance spectroscopy is applied to investigate the characteristics of dye-sensitized solar cells in this study. The improvement of the electron transport in the ZnO photo anode has also been demonstrated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:25:19Z (GMT). No. of bitstreams: 1 ntu-102-R00522712-1.pdf: 7167187 bytes, checksum: f43fdc4312321fdfb1b4de40fc2fccb8 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池概述 2 1.2.1 矽基型太陽能電池 2 1.2.2 無機化合物半導體太陽能電池 3 1.2.3 有機化合物太陽能電池 4 1.3 文獻回顧 7 1.3.1 化學水溶液法製備氧化鋅奈米結構 7 1.3.2 氧化鋅染料敏化太陽能電池 12 1.4 研究動機與目的 22 1.5 論文架構 23 第二章 基礎理論與元件設計 24 2.1 染料敏化太陽能電池原理 24 2.1.1 工作原理及電子傳遞流程 24 2.1.2 染料敏化太陽能電池之電池特性 28 2.1.2.1 太陽光光譜 28 2.1.2.2 太陽能電池等效電路 29 2.1.2.3 伏安特性曲線(Volt-Ampere curve) 30 2.1.2.4 開路電壓(Open circuit voltage, VOC) 32 2.1.2.5 短路電流(Short circuit current, ISC) 33 2.1.2.6 填充因子(Fill factor, FF) 33 2.1.2.7 光電轉換效率(Power conversion efficiency, η) 33 2.1.2.8 入射光子-電流轉換效率(Incident photon to current conversion efficiency, IPCE) 34 2.1.2.9 電化學交流阻抗分析(Electrochemical impedance spectroscopy, EIS) 35 2.2 氧化鋅合成理論 44 2.2.1 氧化鋅簡介 44 2.2.2 氧化鋅奈米結構合成法 46 2.2.2.1 氣相合成法(Vapor phase synthesis, VPS) 46 2.2.2.2 溶膠-凝膠法(Sol-gel method) 48 2.2.2.3 模板法(Template synthesis) 48 2.2.2.4 電化學沉積法(Electrochemical deposition) 48 2.2.3 化學水溶液法(Chemical aqueous solution method) 49 2.2.4 氧化鋅材料於染料敏化太陽能電池之應用 52 2.3 本研究之染料敏化太陽能電池設計 53 2.3.1 電池設計 53 2.3.2 電池陽極 54 2.3.3 有機染料 56 2.3.4 電解質 58 2.3.5 相對電極 59 第三章 製程方法與步驟 60 3.1 實驗製作總流程 60 3.2 實驗所需藥品 63 3.3 氧化鋅工作電極製作 64 3.3.1 基板前處理 64 3.3.2 一維氧化鋅奈米線陣列 65 3.3.3 無基板氧化鋅奈米線薄膜製備 68 3.3.4 星狀氧化鋅奈米顆粒團簇製備 69 3.3.5 氧化鋅奈米線與奈米顆粒複合結構製備 71 3.4 有機染料製備 72 3.5 電解液製備 72 3.6 相對電極製備 73 3.7 染料敏化太陽能電池組裝 73 第四章 實驗結果與量測討論 75 4.1 氧化鋅奈米結構製作結果 75 4.1.1 一維氧化鋅奈米陣列 75 4.1.2 無基板氧化鋅奈米線薄膜 80 4.1.3 星狀氧化鋅奈米顆粒團簇 84 4.1.4 氧化鋅奈米線與星狀奈米顆粒複合結構 88 4.1.5 X光繞射分析 (XRD) 89 4.2 染料敏化太陽能電池特性量測 (I-V curve) 90 4.1 量測設備架設 90 4.2 伏安特性曲線量測結果 92 4.3 入射光子-電流轉換效率量測 (IPCE) 97 4.3.1 量測設備架設 97 4.3.2 入射光子-電流轉換效率量測 98 4.4 電化學交流阻抗分析 (EIS) 99 4.4.1 量測設備架設 99 4.4.2 電化學阻抗圖譜與分析 99 第五章 結論與未來展望 103 5.1 結論 103 5.2 未來展望 104 參考文獻 106 附錄 A:X光繞射分析(X-ray diffraction) 117 附錄 B:吸附理論 118 B.1 吸附特性 118 B.2 吸附平衡 118 B.3 Isotherm等溫曲線 118 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | 化學水溶液法 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 染料敏化太陽能電池 | zh_TW |
| dc.subject | Dye-sensitized solar cell | en |
| dc.subject | Zinc Oxide | en |
| dc.subject | Nanowire | en |
| dc.subject | Nanoparticle | en |
| dc.subject | Chemical solution method | en |
| dc.title | 以化學水溶液法合成多形貌氧化鋅奈米結構及其於染料敏化太陽能電池之應用 | zh_TW |
| dc.title | ZnO Nanostructures Synthesis by Chemical Solution Method and Its Application in Dye-Sensitized Solar Cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳國聲(Kuo-Shen Chen),蘇裕軒(Yu-Hsuan Su),范士岡(Shih-Kang Fan) | |
| dc.subject.keyword | 化學水溶液法,氧化鋅,奈米線,奈米顆粒,染料敏化太陽能電池, | zh_TW |
| dc.subject.keyword | Chemical solution method,Zinc Oxide,Nanowire,Nanoparticle,Dye-sensitized solar cell, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
