請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60665完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張孟基(Men-Chi Chang) | |
| dc.contributor.author | Chia-Ni Tsai | en |
| dc.contributor.author | 蔡嘉倪 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:25:17Z | - |
| dc.date.available | 2023-08-15 | |
| dc.date.copyright | 2013-08-17 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | 簡維甫。2010。利用不同水稻品種探討醣類對水稻低溫逆境及耐受性之關係。國立臺灣大學生物資源暨農學院農藝學系碩士論文。
Abrous-Belbachir O., De Paepe R., Tremolieres A., Mathieu C., Ad F., Benhassaine-Kesri G. (2009) Evidence that norflurazon affects chloroplast lipid unsaturation in soybean leaves (Glycine max L.). Journal of Agricultural and Food Chemistry 57:11434-40. Andreu V., Lagunas B., Collados R., Picorel R., Alfonso M. (2010) The GmFAD7 gene family from soybean: identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity. The Journal of Biological Chemistry 61:3371-84. Arbona V., Manzi M., Ollas C., Gomez-Cadenas A. (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences 14:4885-4911. Ariizumi T., Kishitani S., Inatsugi R., Nishida I., Murata N., Toriyama K. (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell and Physiology 43:751-758. Arondel V., Lemieux B., Hwang I., Gibson S., Goodman H.M., Somerville C.R. (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355. Battal P., Erez M.E., Turker M., Berber I. (2008) Molecular and physiological changes in maize (Zea mays) induced by exogenous NAA, ABA and MeJa during cold stress. Annales Botanici Fennici 45:173-185. Beisson F., Li Y., Bonaventure G., Pollard M., Ohlrogge J.B. (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. The Plant Cell 19:351-368. Berberich T., Harada M., Sugawara K., Kodama H., Iba K., Kusano T. (1998) Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature. Plant Molecular Biology 36:297-306. Blee E. (2002) Impact of phyto-oxylipins in plant defense. Trends in Plant Science 7:315–322. Brown A.P., Slabas A.R. (2009) Fatty acid biosynthesis in plants - metabolic pathways, structure and organization. Wada H. and Murata N. (eds.), Lipids in Photosynthesis: Essential and Regulatory Functions, pp. 11–34. Byfield G.E., Upchurch R.G. (2007) Effect of temperature on delta-9 stearoyl-ACP and microsomal omega-6 desaturase gene expression and fatty acid content in developing soybean seeds. Crop Science 47:1698. Cao Y.-P., Shi J.-L., LI Z., Ming F. (2010) Isolation of OsFAD2, OsFAD6 and FAD family members response to abiotic stresses in Oryza sativa L. . Hereditas 32:839–847. Chalbi N., Hessini K., Gandour M., Mohamed Salma N., Smaoui A., Abdelly C., Youssef N.B. (2013) Are changes in membrane lipids and fatty acid composition related to salt-stress resistance in wild and cultivated barley? Journal of Plant Nutrition and Soil Science 176:138-147. Chang J.J., Chen C.T. (2008) Changing of fatty acids composition in the roots of rice seedlings exposed to copper stress. Taiwanese Journal of Agricultural Chemistry and Food Science 46:22-29. Chapman D.J., De-Felice J., Barber J. (1983) Growth temperature effects on thylakoid membrane lipid and protein content of pea chloroplasts. Plant Physiology 72:225-228. Chaturvedi R., Krothapalli K., Makandar R., Nandi A., Sparks A.A., Roth M.R., Welti R., Shah J. (2008) Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. The Plant Journal 54:106-117. Chen W.P., Paul H.L. (2002) Attenuation of reactive oxygen production during chilling in ABA-treated maize cultured cells, in: P. Li and E. T. Palva (Eds.), Plant Cold Hardiness, Springer US. pp. 223-233. Cheong J.J., Choi Y.D. (2003) Methyl jasmonate as a vital substance in plants. Trends in Genetics 19:409-413. Chinnusamy V., Zhu J., Zhu J.K. (2007) Cold stress regulation of gene expression in plants. Trends in Plant Science 12:444-51. Cook D., Fowler S., Fiehn O., Thomashow M.F. (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences USA 101:15243-15248. Crosatti C., Rizza F., Badeck F.W., Mazzucotelli E., Cattivelli L. (2013) Harden the chloroplast to protect the plant. Physiologia Plantarum 147:55-63. Dai Y.H., Liu X.Y., Meng Q.W., Zhao S.J. (2004) Effect of low temperature on lipid metabolism of thylakoid membrane. Chinese bulletin of Botany 21:506-511. Ding C.K., Wang C.Y., Gross K.C., Smith D.L. (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895-901. Divi U.K., Krishna P. (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology 26:131-6. Duminh J., Pemonge M.H., Petit R.J. (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes 2:428-430. Dyer J., Mullen R.T. (2001) Immunocytological localization of wo plant fatty acid desaturases in the endoplasmic reticulum. Federation of European Biochemical Societies. 494:44-47. Falcone D.L., Gibson S., Lemieux B., Somerville C. (1994) Identification of a gene complements an Arabidopsis mutant deficient in chloroplast ω6 desaturase activity. Plant Physiology and Biochemistry 106:1453–1459. Falcone D.L., Ogas J.P., Somerville C.R. (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biology 4:17. Farooq M., Aziz T., Hussain M., Rehman H., Jabran K., Khan M.B. (2008) Glycinebetaine improves chilling tolerance in hybrid maize. Journal of Agronomy and Crop Science 194:152-160. Fernandez A.P., Strand A. (2008) Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Current Opinion in Plant Biology 11:509-13. Fiehn O. (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics 2:155-168. Froehlich J.E., Wilkerson C.G., Ray W.K., McAndrew R.S., Osteryoung K.W., Gage D.A., Phinney B.S. (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. Journal of Proteome Research 2:413–425. Fukushima A., Kusano M. (2013) Recent progress in the development of metabolome databases for plant systems biology. Front Plant Science 4:2-11. Gajewska E., Bernat P., Długoński J., Skłodowska M. (2012) Effect of nickel on membrane integrity, lipid peroxidation and fatty acid composition in wheat seedlings. Journal of Agronomy and Crop Science 198:286-294. Gibson S., Arondel V., Iba K., Somerville C. (1994) Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiology 106:1615-1621. Gombos Z., Wada H., Murata N. (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proceedings of the National Academy of Sciences USA 91:8787-8791. Hamada T., Nishiuchi T., Kodama H., Nishimura M., Iba K. (1996) cDNA cloning of a wounding-inducible gene encoding a plastid omega-3 fatty acid desaturase from tobacco. Plant Cell and Physiology 37:606-611. Hammadi M., Pers J.-O., Berthou C., Youinou P., Bordron A. (2010) A new approach to comparing anti-CD20 antibodies importance of the lipid rafts in their lytic efficiency. OncoTargets and Therapy 3:99-109. Hannah M.A., Wiese D., Freund S., Fiehn O., Heyer A.G., Hincha D.K. (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiology 142:98-112. Heinemann R.J.B., Xu Z., Godber J.S., Lanfer-Marquez U.M. (2008) Tocopherols, tocotrienols, and γ-oryzanol contents in Japonica and Indica subspecies of rice (Oryza sativa L.) cultivated in Brazil. Cereal Chemistry 85:243-247. Horiguchi G., Fuse T., Kawakami N., Kodama H., Iba K. (2000) Temperature-dependent translational regulation of the ER ω-3 fatty acid desaturase gene in wheat root tips. The Plant Journal 24:805-813. Hossain M.A., Munemasa S., Uraji M., Nakamura Y., Mori I.C., Murata Y. (2011) Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiology 156:430-8. Hu Z., Zhan G., Wang H., Hua W. (2012) A simple method for isolating chloroplast DNA and mitochondria DNA from the same rapeseed green leaf tissue. Journal of Integrative Agriculture 11:1212-1215. Hugly S., Somerville C. (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiology 99:197-202. Iba K. (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology 53:225-245. Iba K., Gibson S., Nishiuchi T., Fuse T., Nishimura M., Arondel V., Hugly S., Somerville C. (1993) A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. The Journal of Biological Chemistry 268:24099-24105. Ishiguro S., Kawai-Oda A., Ueda J., Nishida I., Okada K. (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 Gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. The Plant Cell 13:2191-2209. Jenks M.A., Eigenbrode S.D., Lemieux B. (2002) Cuticular waxes of Arabidopsis. Arabidopsis Book 1:e0016. Jewell M.C., Campbell B.C., Godwin I.D. (2010) Transgenic plants for abiotic stress resistance:71-132. C. Kole et al. (eds.), Transgenic Crop Plants, Kachroo A., Kachroo P. (2007) Salicylic acid-, jasmonic acid- and ethylene-mediated regulation of plant. Genitic Engineering 28:55-83. Kachroo A., Kachroo P. (2009) Fatty Acid-derived signals in plant defense. Annual Review of Plant Biology 47:153-176. Kachroo A., Lapchyk L., Fukushige H., Hildebrand D., Klessig D., Kachroo P. (2003) Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. The Plant Cell 15:2952-2965. Kachroo A., Venugopal S.C., Lapchyk L., Falcone D., Hildebrand D., Kachroo P. (2004) Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. Proceedings of the National Academy of Sciences 101:5152-7. Kachroo P., Shanklin J., Shah J., Whittle E.J., Klessig D.F. (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proceedings of the National Academy of Sciences USA 98:9448-9453. Kargiotidou A., Deli D., Galanopoulou D., Tsaftaris A., Farmaki T. (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). Journal of Experimental Botany 59:2043-56. Kasamo K., Kagita F., Yamanishi H., Sakaki T. (1992) Low temperature-induced changes in the thermotropic properties and fatty acid composition of the plasma membrane and tonoplast of cultured Rice (Oryza sativa L.) Cells. Plant and Cell Physiology 33:609-616. Kodama H., Akagi H., Kusumi K., Fujimura T., Iba K. (1997) Structure, chromosomal location and expression of a rice gene encoding the microsome ω-3 fatty acid desaturase. Plant Molecular Biology 33:493-502. Kodama H., Hamada T., Horiguchi G., Nishimura M., Iba K. (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3 fatty acid desaturase in transgenic tobacco. Plant Physiology 105:601-605. Krasensky J., Jonak C. (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63:1593-1608. Krishna P. (2003) Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation 22:289-297. Kunst L., Samuels A.L. (2003) Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42:51-80. Larkindale J., Huang B. (2004) Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany 51:57-67. Lee T.-M., Lur H.-S., Chu C. (1995) Abscisic acid and putrescine accumulation in chilling-tolerant rice cultivars. Crop Science 35:502-508. Lee T.M., Lur H.S., Chu C. (1997) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. II. Modulation of free polyamine levels. Plant Science 126:1-10. Lee T.M., Lur H.S., Lin Y.H., Chu C. (1996) Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell and Environment 19:65-74. Li-Beisson Y., Shorrosh B., Beisson F., Andersson M.X., Arondel V., Bates P.D., Baud S., Bird D., Debono A., Durrett T.P., Franke R.B., Graham I.A., Katayama K., Kelly A.A., Larson T., Markham J.E., Miquel M., Molina I., Nishida I., Rowland O., Samuels L., Schmid K.M., Wada H., Welti R., Xu C., Zallot R., Ohlrogge J. (2010) Acyl-lipid metabolism. Arabidopsis Book 8:e0133. Li L., Wang X., Gai J., Yu D. (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. Journal of Plant Physiology 164:1516-26. Li W., Li M., Zhang W., Welti R., Wang X. (2004) The plasma membrane-bound phospholipase Ddelta enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnology 22:427-433. Liu X., Hua X., Guo J., Qi D., Wang L., Liu Z., Jin Z., Chen S., Liu G. (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnology Letters 30:1275-80. Lo M., Taylor C., Wang L., Nowack L., Wang T.-W., Thompson J. (2004) Characterization of an ultraviolet B-induced lipase in Arabidopsis. Plant Physiology 135:947-958. Maeda H., Song W., Sage T.L., Della-Penna D. (2006) Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. The Plant Cell 18:2710-2732. Makarenko S.P., Konstantinov Y.M., Khotimchenko S.V., A. K.T., Arziev A.S. (2003) Fatty acid composition of mitochondrial membrane lipids in cultivated (Zea mays) and wild (Elymus sibiricus) grasses. Russian Journal of Plant Physiology 50:487-491. Martz F., Kiviniemi S., Palva T.E., Sutinen M.L. (2006) Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves. The Journal of Experimental Biology 57:897-909. Matsuda O., Sakamoto H., Hashimoto T., Iba K. (2005) A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. The Journal of Biological Chemistry 280:3597-604. Matteucci M., D'Angeli S., Errico S., Lamanna R., Perrotta G., Altamura M.M. (2011) Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. The Journal of Experimental Botany 62:3403-20. Mikoshiba K. (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. Journal of Neurochemistry 102:1426-1446. Miquel M., James D., Donner H., Browse J. (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proceedings of the National Academy of Sciences USA 90:6208-6212. Moellering E.R., Benning C. (2011) Galactoglycerolipid metabolism under stress: a time for remodeling. Trends in Plant Science 16:98-107. Moon B.Y., Higashi S.I., Gombos Z., Murata N. (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic. Proceedings of the National Academy of Sciences USA 92:6219-6223. Morsy M.R., Jouve L., Hausman J.F., Hoffmann L., Stewart J.M. (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. Journal of Plant Physiology 164:157-67. Murakami Y., Tsuyama M., Kobayashi Y., Kodama H., Iba K. (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476-479. Nair P.M.G., Kang I.S., Moon B.Y., Lee C.H. (2009) Effects of low temperature stress on rice (Oryza sativa L.) plastid ω-3 desaturase gene, OsFAD8 and its functional analysis using T-DNA mutants. Plant Cell, Tissue and Organ Culture 98:87-96. Nandi A., Krothapalli K., Buseman C.M., Li M., Welti R., Enyedi A., Shah J. (2003) Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. The Plant Cell 15:2383-98. Narva’ez-Va’squez J., Florin-Christensen J., Ryan C.A. (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. The Plant Cell 11:2249–2260. Nishiuchi T., Hamada T., Kodama H., Iba K. (1997) Wounding changes the spatial expression pattern of the Arabidopsis plastid omega-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. The Plant Cell 9:1701-1712. Okuley J., Lightner J., Feldmann K., Yadav N., Lark E., Browse J. (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. The Plant Cell 6:147-58. Orvar B.L., Sangwan V., Omann F., Dhindsa R.S. (2000) Early steps in cold sensing by plant cells the role of actin cytoskeleton and membrane fluidity. The Plant Journal 23:785-794. Padham A.K., Hopkins M.T., Wang T.-W., McNamara L.M., Lo M., Richardson L.G.L., Smith M.D., Taylor C.A., Thompson J.E. (2007) Characterization of a plastid triacylglycerol lipase from Arabidopsis. Plant Physiology 143:1372-1384. Park E.J., Jeknic Z., Chen T.H. (2006) Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell and Physiology 47:706-14. Pastori G.M., Kiddle G., Antoniw J., Bernard S., Veljovic-Jovanovic S., Verrier P.J., Noctor G., Foyer C.H. (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. The Plant Cell 15:939-951. Paul M.J., Primavsi L.F., Jhurreea D., Zhang Y. (2008) Trehalose metabolism and signaling. Annual Review of Plant Biology 59:417-441. Pedroso N., Matias A.C., Cyrne L., Antunes F., Borges C., Malho R., de Almeida R.F., Herrero E., Marinho H.S. (2009) Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae. Free Radical Biology and Medicine 46:289-98. Pollard M., Beisson F., Li Y., Ohlrogge J.B. (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science 13:236-246. Qi F., Li J., Duan L., Li Z. (2006) Inductions of coronatine and MeJA to low-temperature resistance of wheat seedlings. Acta Botanica Boreali-Occidentalia Sinica 26:1776-1780. Qin B.X., Tang D., Huang J., Li M., Wu X.R., Lu L.L., Wang K.J., Yu H.X., Chen J.M., Gu M.H., Cheng Z.K. (2011) Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Molecular Plant 4:985-995. Rikin A., Dillwith J.W., Bergman D.K. (1993) Correlation between the circadian rhythm of resistance to extreme temperatures and changes in fatty acid. Plant Physiology 101:31-36. Rinalducci S., Murgiano L., Zolla L. (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Journal of Experimental Botany 59:3781-801. Rolland F., Baena-Gonzalez E., Sheen J. (2006) Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology 57:675-709. Routaboul J.M., Fischer S.F., Browse J. (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiology 124:1697-1705. Routaboul J.M., Skidmore C., Wallis J.G., Browse J. (2012) Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids. Journal of Experimental Botany 63:1435-43. Rowland O., Zheng H., Hepworth S.R., Lam P., Jetter R., Kunst L. (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiology 142:866-77. Ruelland E., Zachowski A. (2010) How plants sense temperature. Environmental and Experimental Botany 69:225-232. Samuels L., Kunst L., Jetter R. (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annual Review of Plant Biology 59:683-707. Sangwan V., Orvar B.L., Beyerly J., Hirt H., Dhindsa R.S. (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant Journal 31:629-638. Scarcelli N., Barnaud A., Eiserhardt W., Treier U.A., Seveno M., d'Anfray A., Vigouroux Y., Pintaud J.C. (2011) A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons. PLos One 6:e19954. Shi J., Cao Y., Fan X., Li M., Wang Y., Ming F. (2012) A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Molecular Breeding 29:743-757. Shi Y., An L., Li X., Huang C., Chen G. (2011) The octadecanoid signaling pathway participates in the chilling-induced transcription of omega-3 fatty acid desaturases in Arabidopsis. Plant Physiology and Biochemistry 49:208-215. Shimada T., Wakita Y., Otani M., Iba K. (2000) Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal omega-3 fatty acid desaturase gene (NtFAD3). Plant Biotechnology Journal 17:43-48. Shinozaki K., Yamaguchi-Shinozaki K. (2000) Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biotechnology 3:217-223. Singh A., Baranwal V., Shankar A., Kanwar P., Ranjan R., Yadav S., Pandey A., Kapoor S., Pandey G.K. (2012) Rice phospholipase A superfamily: organization, phylogenetic and expression analysis during abiotic stresses and development. PLoS One 7:e30947. Sperdouli I., Moustakas M. (2012) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology 169:577-585. Sun Q., Wang K., Yoshimura A., Doi K. (2002) Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice ( Oryza rufipogon Griff.) and cultivated rice ( Oryza sativa L.). Theoretical and Applied Genetics 104:1335-1345. Sun X.L., Yang S., Wang L.Y., Zhang Q.Y., Zhao S.J., Meng Q.W. (2011) The unsaturation of phosphatidylglycerol in thylakoid membrane alleviates PSII photoinhibition under chilling stress. Plant Cell Reports 30:1939-47. Takami T., Shibata M., Kobayashi Y., Shikanai T. (2010) De novo biosynthesis of fatty acids plays critical roles in the response of the photosynthetic machinery to low temperature in Arabidopsis. Plant Cell and Physiology 51:1265-75. Tang J., Xia H., Cao M., Zhang X., Zeng W., Hu S., Tong W., Wang J., Yu J., Yang H., Zhu L. (2004) A comparison of rice chloroplast genomes. Plant Physiology 135:412-20. Todoroki S., Hayashi T., Nagata T., Kanegae H., Mori M., Kikuchi S. (1998) cDNA cloning of gamma-ray inducible genes encoding omega-3 fatty acid desaturase from potato tuber. Plant Cell and Physiology 39:s136. Torres-Franklin M.L., Repellin A., Huynh V.B., d’Arcy-Lameta A., Zuily-Fodil Y., Pham-Thi A.T. (2009) Omega-3 fatty acid desaturase (FAD3, FAD7, FAD8) gene expression and linolenic acid content in cowpea leaves submitted to drought and after rehydration. Environmental and Experimental Botany 65:162-169. Tovuu A., Zulfugarov I.S., Lee C.H. (2013) Correlations between the temperature dependence of chlorophyll fluorescence and the fluidity of thylakoid membranes. Physiologia Plantarum 147:409-146. Trovato M., Mattioli R., Costantino P. (2008) Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19:325-346. Uemura M., Steponkus P.L. (1997) Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. Plant Physiology 114:1493-1500. Uemura M., Tominaga Y., Nakagawara C., Shigematsu S., Minami A., Kawamura Y. (2006) Responses of the plasma membrane to low temperatures. Physiologia Plantarum 126:81-89. Upchurch R.G. (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters 30:967-977. Urano K., Kurihara Y., Seki M., Shinozaki K. (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology 13:132-138. Usadel B., Blasing O.E., Gibon Y., Poree F., Hohne M., Gunter M., Trethewey R., Kamlage B., Poorter H., Stitt M. (2008) Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell and Environment 31:518-47. Vigh L., Torok Z., Balogh G., Glatz A., Piotto S., Horvath I. (2007) Membrane-regulated stress response: A theoretical and practical approach, in: P. Csermely and L. Vigh (Eds.), Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks, Springer New York. pp. 114-131. Valluru R., Van den Ende W. (2008) Plant fructans in stress environments: emerging concepts and future prospects: Early warning and assessment report series. The Journal of Experimental Botany 59:2905-16. Vani B., Pardha Saradhi P., Mohanty P. (2001) Alteration in chloroplast structure and thylakoid membrane composition due to in vivo heat treatment of rice seedlings: correlation with the functional changes. Journal of Plant Physiology 158:583-592. Vaultier M.N., Cantrel C., Vergnolle C., Justin A.M., Demandre C., Benhassaine-Kesri G., Cicek D., Zachowski A., Ruelland E. (2006) Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. Federation of European Biochemical Societies 580:4218-4223. Vigh L., Horvath I., Hasselt P.R.V., Kuiper P.J.C. (1985) Effect of frost hardening on lipid and fatty acid composition of chloroplast thylakoid membranes in two wheat varieties of contrasting hardiness. Plant Physiology 79:756-759. Vijayan P., Browse J. (2002) Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiology 129:876-885. Wakita Y., Otani M., Hamada T., Mori M., Iba K., Shimada T. (2001) A tobacco microsomal ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweet potato (Ipomoea batatas). Plant Cell Reports 20:244-249. Wanders R.J. (2004) Peroxisomes, lipid metabolism, and peroxisomal disorders. Molecular Genetics and Metabolism 83:16-27. Wang J., Ming F., Pittman J., Han Y., Hu J., Guo B., Shen D. (2006) Characterization of a rice (Oryza sativa L.) gene encoding a temperature-dependent chloroplast omega-3 fatty acid desaturase. Biochemical & Biophysical Research Communications 340:1209-16. Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H.E., Rajashekar C.B., Williams T.D., Wang X. (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. The Journal of Biological Chemistry 277:31994-2002. Xu L., Han L., Huang B. (2011) Membrane fatty acid composition and saturation levels associated with leaf dehydration tolerance and post-drought rehydration in Kentucky Bluegrass. Crop Science 51:273-281. Yara A., Yaeno T., Hasegawa M., Seto H., Montillet J.L., Kusumi K., Seo S., Iba K. (2007) Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases. Plant Cell and Physiology 48:1263-74. Yoshikawa H., Honda C., Kondo S. (2007) Effect of low-temperature stress on abscisic acid, jasmonates, and polyamines in apples. Plant Growth Regulation 52:199-206. Yu L.J., Luo Y.F., Liao B., Xie L.J., Chen L., Xiao S., Li J.T., Hu S.N., Shu W.S. (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytologist 195:97-112. Yu Y., Zhao F., Wan S., Hao Y., Sun Q. (2011) The effect of calcium and jasmonic acid on CBF expression in spinach. Agricultural Basic Science and Technology 12:1574-1575. Zhang J.Y., Broeckling C., Sumner L., Wang Z.Y. (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Molecular Biology 64:265-278. Zhang J.t., Liu H., Sun J., Li B., Zhu Q., Chen S.l., Zhang H.X. (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS One 7:e30355. Zhang J.T., Zhu J.Q., Zhu Q., Liu H., Gao X.S., Zhang H.X. (2009) Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 390:469-74. Zhu S.Q., Yu C.M., Liu X.Y., Ji B.H., Jiao D.M. (2007) Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. Journal of Integrative Plant Biology 49:463-471. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60665 | - |
| dc.description.abstract | 脂肪酸於植物正常生長及逆境適應方面,在生理、生化及代謝上皆扮演許多重要角色。不僅可作為不同能量儲存的形式、膜系的構成,更是植物適應外界環境溫度變化的關鍵因子。為了解水稻之脂肪酸組成及其不飽和程度是否亦與低溫逆境耐受性相關,本研究先利用 GC-FID 建立水稻脂肪酸分析平台,再進一步利用對低溫敏感之臺中在來一號 (TCN1) 及耐低溫之臺農67號 (TNG67) 水稻品種為材料 ,以 GC-MS (Gas chromatography–mass spectrometer) 技術平台分析兩品種地上部及地下部於低溫處理下脂肪酸組成之變化情形。結果顯示,TCN1水稻幼苗於短時間低溫處理下,地上部飽和脂肪酸 (C18:0、C20:0、C22:0、C24:0及C26:0) 含量有下降之趨勢,而地下部之不飽和脂肪酸 (C18:2及C18:3) 於長時間及短時間低溫處理下皆呈顯著性下降;TNG67 水稻幼苗於短時間及長時間低溫處理,不論地上部或地下部之脂肪酸組成並無太大的變化,僅C26:0於地上部短時間低溫處理後呈顯著性上升而長時間處理下則下降;相反的於地下部長時間處理時,C26:0則呈顯著性上升。另外分析兩品種於低溫逆境下葉綠體脂肪酸組成之變化情形,發現TNG67之 LCFAs (Long chain fatty acids)含量變化程度較TCN1大,且具有顯著性差異。若以判斷不飽和脂肪酸比例及程度之參數:不飽和脂肪酸比 (Un./Sa.) 與不飽和指數 (Double bond index, DBI) 分析地上部、地下部之細胞膜及葉綠體類囊膜脂肪酸組成變化。發現TNG67地上部及地下部可藉由維持較高的不飽和程度以維持細胞膜性的穩定性來抵禦低溫逆境,且與Fv/Fm值具有顯著性的正相關。而TNG67葉綠體之不飽和程度也高於TCN1,是由於TNG67具有較高含量的C18:3,且飽和脂肪酸C16:0及C18:0含量也較低於TCN1。此外利用qRT-PCR分析與催化不飽和脂肪酸生合成的關鍵酵素OsFADs 之基因表現,發現低溫可誘導TNG67地上部OsFAD7及OsFAD8基因之大量表現,推測其可能有助於細胞內JAs之生合成。此外,TNG67地上部α-Tocopherol 及 Campesterol 於低溫逆境下相較TCN1之下降卻仍可維持一定的含量。α-Tocopherol為植物體內重要的抗氧化物,且Campesterol為細胞內生合成BRs (Brassinosteroids) 之前驅物,而C24:0、C26:0及其衍生物則有助於蠟質及角質層之生合成,以上皆有助於TNG67抵禦低溫逆境所造成的傷害。未來,將可利用以上結果提供育種者作為篩選出耐低溫逆境品種之代謝產物標誌 (Metabolite biomarkers)。 | zh_TW |
| dc.description.abstract | Fatty acids participate in numerous physiological, biochemical and metabolic processes of plants and play important roles in plant growth, development and adaption in the environmental stresses. Fatty acids are not only used for energy storage, membrane composition but also serve as key factors in the adaptation of environmental temperature change. To address the issue that whether changes of fatty acids and unsaturation levels are correlated with cold stress tolerance in rice, we initially used GC-FID to establish the analysis platform of fatty acid profiles. Then, we used two different varieties of rice, TCN1 (cold-sensitive cultivar) and TNG67 (cold-tolerance cultivar), as experimental materials to compare the corresponding fatty acid compositional changes under cold stress by GC-MS. The results showed that the percentage of saturated fatty acids (C18:0, C20:0, C22:0, C24:0 and C26:0) was declined after short-term cold stress treatment in shoot of TCN1 rice seedlings. Moreover, the levels of C18:2 and C18:3 in TCN1 root were also significantly decreased under short- and long- term cold stress. Whereas, in the cold-tolerant cultivar TNG67, the composition of fatty acids was maintained as the same except C26:0 amount was increased in shoot under short-term cold stress but reduced with long-term cold treatment. We were also interested in analyzing the alteration of fatty acids profile in TCN1 and TNG67 chloroplasts. The accumulation of long chain fatty acids (LCFAs) was obviously higher in TNG67 compared to that of TCN1. We further took advantage of other two parameters, Unsaturated fatty acids/ Saturated fatty acids (Un./Sa.) and Double Bond Index (DBI) to analyze the portion and degree of unsaturated fatty acids in the plasma and the thylakoid membranes. The results indicated that the maintenance of higher content of unsaturated fatty acids could keep membrane stability either in the shoot or root of TNG67 than in TCN1. These two parameters were positively correlated with Fv/Fm value in TNG67. Compared with TCN1, the thylakoid membrane in the chloroplast of TNG67 had higher level of C18:3 and lower content of C16:0 and C18:0. These results suggested that the the cold stress tolerance of TNG67 may be due to maintenance of unsaturated level in the plasma and chloroplast thylakoid membranes, which provides a way for keeping membrane stability under cold stress. In addition, the real-time PCR technique was applied to monitor the gene expression changes of rice fatty acid desaturase gene family. We found that the gene expressions of ω-3 fatty acid desaturase-related genes, OsFAD7 and OsFAD8, were highly induced under short-term cold stress in the shoot of TNG67. This may lead to the gain of C18:3 which enhances JA biosynthesis and increases cold stress tolerance. Interestingly, TNG67 could keep fixed amounts of α-Tocopherol and campesterol under cold stress. α-Tocopherol is well known as an antioxidant material and campesterol was the precursor of brassinosteroids. Also, the increase of C24:0, C26:0 and its derivatives could be used for the the biosynthesis of wax and cutin in TNG67. From this study in the future, we can take advantage of these metabolites as biomarkers for the selection and breeding of cold stress tolerance-realted rice varieties | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:25:17Z (GMT). No. of bitstreams: 1 ntu-102-R00621105-1.pdf: 6353430 bytes, checksum: 9800ea2e91a5c254d2ba07e9ca34dcc6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract V 縮寫字對照表 VII 摘要目錄 IX 表目錄 XII 圖目錄 XIII 附錄目錄 XIV 第一章 前言 1 第二章 前人研究 3 一、 作物對低溫耐受性的生理代謝機制 3 二、 代謝體學與植物非生物逆境耐受性之相關研究 4 三、 膜的流動性及不飽和程度影響逆境耐受性 5 四、 FADs (Fatty acid desaturase) 影響植物對於溫度逆境耐受性 8 五、 類囊體膜系脂肪酸組成對於植物體抗低溫逆境之影響 10 六、 脂肪酸與植物生物及非生物逆境耐受性之相關性 11 七、 研究目的及實驗架構 14 第三章 材料與方法 15 一、 試驗材料 15 二、 水稻種子催芽及生長條件 15 三、 低溫處理條件 15 四、 水稻生理分析 16 五、 水稻脂肪酸之萃取及衍生化反應 16 六、 分離水稻葉綠體 17 七、 檢測葉綠體之純度 18 八、 GC-FID及GC-MS分析 19 九、 水稻基因表現分析 20 第四章 結果 24 一、 TCN1 及 TNG67 水稻品種低溫逆境下之形態變化及生理反應 24 二、 以 TNG67 為材料建立水稻脂肪酸分析平台 25 三、 利用 GC-MS 分析於低溫逆境下TCN1 及 TNG67 地上部及地下部脂肪酸組成 (Fatty acid composition profile) 變化 26 四、 利用 GC-MS 分析於短時間低溫逆境下TCN1 及 TNG67 TCN1葉綠體脂肪酸組成 29 五、 TCN1 及 TNG67 於低溫逆境下不飽和脂肪酸程度的變化與生理指標之相關性 30 六、 TCN1 及 TNG67 於短時間低溫處理下OsFADs表現情形 32 第五章 討論 33 一、 水稻低溫逆境下脂肪酸組成變化結果與其他相關研究之比較 33 二、 低溫處理下水稻 OsFADs 基因表現與不飽和脂肪酸組成差異間之相關性分析 37 三、 植物細胞內脂肪酸於低溫逆境下可能扮演之角色 38 四、 脂肪酸組成之變異及不飽和程度對TNG67水稻品種低溫耐受性之影響 39 五、 未來試驗方向及展望 40 第六章 參考文獻 41 附錄 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 低溫 | zh_TW |
| dc.subject | GC-MS | zh_TW |
| dc.subject | 脂肪酸 | zh_TW |
| dc.subject | 不飽和程度 | zh_TW |
| dc.subject | 膜系穩定性 | zh_TW |
| dc.subject | degree of unsaturation | en |
| dc.subject | GC-MS | en |
| dc.subject | fatty acids | en |
| dc.subject | membrane stability | en |
| dc.subject | cold stress | en |
| dc.title | 探討水稻 (Oryza sativa L.) 幼苗脂肪酸組成與低溫逆境耐受性之關係 | zh_TW |
| dc.title | Studies on the Relationship between Fatty Acid Composition and Cold Stress Tolerance of Rice (Oryza sativa L.) Seedlings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪傳揚(Chwan-Yang Hong),黃文理(Wen-Li Huang),謝旭亮(Hsu-Liang Hsieh),蘇南維(Nan-Wei Su) | |
| dc.subject.keyword | 低溫,GC-MS,脂肪酸,不飽和程度,膜系穩定性, | zh_TW |
| dc.subject.keyword | cold stress,GC-MS,fatty acids,degree of unsaturation,membrane stability, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
