請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60655
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張瑞峰(Ruey-Feng Chang) | |
dc.contributor.author | Shih-Kai Wang | en |
dc.contributor.author | 王世凱 | zh_TW |
dc.date.accessioned | 2021-06-16T10:24:54Z | - |
dc.date.available | 2018-08-20 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | References
[1] D. M. Regner, G. K. Hesley, N. J. Hangiandreou, M. J. Morton, M. R. Nordland, D. D. Meixner, T. J. Hall, M. A. Farrell, J. N. Mandrekar, and W. S. Harmsen, 'Breast Lesions: Evaluation with US Strain Imaging: Clinical Experience of Multiple Observers,' Radiology, vol. 238, pp. 425-437, 2006. [2] E. Fleury, J. Fleury, S. Piato, and D. Roveda Jr, 'New elastographic classification of breast lesions during and after compression,' Diagn Interv Radiol, vol. 15, pp. 96-103, 2009. [3] R. C. Booi, P. L. Carson, M. A. Roubidoux, A. L. Hall, and J. M. Rubin, 'Characterization of cysts using differential correlation coefficient values from two dimensional breast elastography: preliminary study,' Ultrasound in medicine & biology, vol. 34, pp. 12-21, 2008. [4] N. Cho, W. K. Moon, J. S. Park, J. H. Cha, M. Jang, and M. H. Seong, 'Nonpalpable breast masses: evaluation by US elastography,' Korean Journal of Radiology, vol. 9, pp. 111-118, 2008. [5] B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen, 'Elastography of breast lesions: initial clinical results,' Radiology, vol. 202, pp. 79-86, 1997. [6] K. S. Bhatia, C. Cho, C. S. Tong, E. H. Yuen, and A. T. Ahuja, 'Shear wave elasticity imaging of cervical lymph nodes,' Ultrasound in medicine & biology, vol. 38, pp. 195-201. [7] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, 'Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,' Ultrasound in medicine & biology, vol. 24, pp. 1419-1435, 1998. [8] S. H. Lee, J. M. Chang, W. H. Kim, M. S. Bae, N. Cho, A. Yi, H. R. Koo, S. J. Kim, J. Y. Kim, and W. K. Moon, 'Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography,' European radiology, pp. 1-12. [9] A. Athanasiou, A. Tardivon, M. Tanter, B. Sigal-Zafrani, J. Bercoff, T. Deffieux, J.-L. Gennisson, M. Fink, and S. Neuenschwander, 'Breast Lesions: Quantitative Elastography with Supersonic Shear Imaging-Preliminary Results,' Radiology, vol. 256, pp. 297-303, 2010. [10] W. A. Berg, D. O. Cosgrove, C. J. Dor, F. K. Schfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, and M. Locatelli, 'Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,' Radiology, vol. 262, pp. 435-449, 2012. [11] A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, 'Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,' Breast Cancer Res, vol. 12, p. R104. [12] W. K. Moon, C. S. Huang, W. C. Shen, E. Takada, R. F. Chang, J. Joe, M. Nakajima, and M. Kobayashi, 'Analysis of elastographic and B-mode features at sonoelastography for breast tumor classification,' Ultrasound in medicine & biology, vol. 35, pp. 1794-1802, 2009. [13] A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, 'Breast Disease: Clinical Application of US Elastography for Diagnosis,' Radiology, vol. 239, pp. 341-350, 2006. [14] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms: Kluwer Academic Publishers, 1981. [15] J. C. Bezdek, R. Ehrlich, and W. Full, 'FCM: The fuzzy c-means clustering algorithm,' Computers & Geosciences, vol. 10, pp. 191-203, 1984. [16] M. J. Sabin, 'Convergence and consistency of fuzzy c-means/ISODATA algorithms,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, pp. 661-668, 1987. [17] P. Bhattacharya, 'Connected component labeling for binary images on a reconfigurable mesh architecture,' Journal of Systems Architecture, vol. 42, pp. 309-313, 1996. [18] R. F. Chang, W. C. Shen, M. C. Yang, W. K. Moon, E. Takada, Y. C. Ho, M. Nakajima, and M. Kobayashi, 'Computer-aided diagnosis of breast color elastography,' in Medical Imaging, 2008, pp. 69150I-69150I-9. [19] M. M. Deza and E. Deza, Encyclopedia of distances: Springer, 2009. [20] R. C. Gonzalez, R. E. Woods, and B. R. Masters, Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2009. [21] H. J. A. M. Heijmans, 'Theoretical aspects of gray-level morphology,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 13, pp. 568-582, 1991. [22] J. Serra, 'Biomedical Image Analysis by Mathematical Morphology,' Pathologie Biologie, vol. 27, pp. 205-207, 1979. [23] S. R. Sternberg, 'Grayscale Morphology,' Computer Vision Graphics and Image Processing, vol. 35, pp. 333-355, Sep 1986. [24] J. Saniie and M. Mohamed, 'Ultrasonic flaw detection based on mathematical morphology,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 41, pp. 150-160, 1994. [25] R. M. Haralock and L. G. Shapiro, Computer and robot vision: Addison-Wesley Longman Publishing Co., Inc., 1991. [26] M.-K. Hu, 'Visual pattern recognition by moment invariants,' Information Theory, IRE Transactions on, vol. 8, pp. 179-187, 1962. [27] W. C. Shen, R. F. Chang, W. K. Moon, Y. H. Chou, and C. S. Huang, 'Breast ultrasound computer-aided diagnosis using BI-RADS features,' Academic Radiology, vol. 14, pp. 928-939, Aug 2007. [28] D. W. Hosmer and S. Lemeshow, Applied logistic regression, 2nd ed. New York: Wiley, 2000. [29] E. Alpaydin, Introduction to machine learning. Cambridge, Mass.: MIT Press, 2004. [30] W. C. Shen, R. F. Chang, and W. K. Moon, 'Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS),' Ultrasound in Medicine and Biology, vol. 33, pp. 1688-1698, Nov 2007. [31] A. P. Field, Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60655 | - |
dc.description.abstract | 乳癌一直是全球女性的十大死因之一,而腫瘤的軟硬程度也已經被證實為分辨良惡性的主要特徵。不同於傳統的乳房彈性超音波,在本實驗中所使用的乳房剪力波彈性超音波只需利用聲波輻射便可取得腫瘤的彈性硬度。本實驗更使用了能夠提供完整組織彈性資訊的三維乳房剪力彈性超音波。首先,我們將三維剪力波的多張影像合成一張新的影像,此張新的影像只保留各張圖片中最硬的資訊。接著我們基於模糊平均分群法來去除一些合成影像過程所產生的一些較多餘得彈性資訊。而我們論文的目的即是針對此影像來擷取出彈性特徵並用以診斷腫瘤的良惡性。最後,我們會比較二維以及三維剪力波影像在診斷上的差異。本實驗的病例共有51個,其中包含25個良性與26個惡性的病例。根據實驗結果,本篇論文提出的方法對於三維及一般二維剪力波影像作腫瘤診斷的準確度分別為94.12%及80.39%。經由實驗結果分析,三維影像在腫瘤分辨的準確度上會有顯著的提升。 | zh_TW |
dc.description.abstract | The breast cancer is always one of the top ten death causes for women around the world. The firmness of the tumors has been proved to be an important characteristic for differentiating benign and malignant tumors. Different from the conventional sonoelastography, this paper employs the shear wave elastography that uses the acoustic radiation substituting the manual tissue compression to generate the information of tumor firmness. The new three-dimensional (3-D) shear wave elastography technique that provides more complete of data on tissue firmness of the mass is also adopted in this study. We aim to merge the eight elastographic slices from a 3-D image into one image at first. We then reduce the insignificant elasticity information of the merged image based on fuzzy c-means clustering and extract the elasticity information to diagnose tumors. Finally, the diagnostic performances of 2-D and 3-D shear wave elastography for tumor diagnosis are compared. In this study, we use 51 breast tumors composed of 25 benign and 26 malignant cases. The experimental results of 3-D and 2-D shear wave elastography illustrate that the accuracy in distinguishing tumors are 94.12% and 80.39%, respectively. Based on statistical analyses of experimental results, the diagnostic performances on the 3-D images are significantly better than those of 2-D images. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:24:54Z (GMT). No. of bitstreams: 1 ntu-102-R00922077-1.pdf: 3606885 bytes, checksum: b2fc666698df5fa03243833bcf74ac62 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iv Abstract v Table of Contents vi List of Figures vii List of Tables x Chapter 1 Introduction 11 Chapter 2 Materials 14 2.1 3-D Shear Wave Image 14 2.2 Lesions 18 Chapter 3 The Proposed Method 19 3.1 Elasticity Extraction 21 3.2 Multi-slice Elasticity Extraction 22 3.2.1 Merged elastographic images 25 3.2.2 Insignificant Region Reduction 25 3.3 Elastographic Feature Analysis 30 3.3.1 Average Tissue Elasticity of Each Cluster 31 3.3.2 Clustering Stiffness Ratio 31 3.3.3 Distance between Stiffer Regions and Tumor Center 32 3.4 Statistical Analysis 36 Chapter 4 Experiment Results 38 4.1 Features analysis 38 4.2 Tumor Classification 40 4.3 Discussion 51 Chapter 5 Conclusion and Future Works 56 References 58 | |
dc.language.iso | en | |
dc.title | 3-D乳房剪力波彈性影像之腫瘤診斷 | zh_TW |
dc.title | Tumor Diagnosis of 3-D Breast Shear Wave Elastography | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃俊升,張允中 | |
dc.subject.keyword | 二維/三維彈性超音波,剪力波,乳癌, | zh_TW |
dc.subject.keyword | 2-D/3-D elastography,shear wave,breast tumor, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。