請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60647完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林立德 | |
| dc.contributor.author | Ching-Yu Tu | en |
| dc.contributor.author | 杜京育 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:24:37Z | - |
| dc.date.available | 2016-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | 參考文獻
3M ESPE(2012). 3M™ ESPE™ MDI, Mini dental implants surgical & restorative protocols. Accessed on 6/30/2013 at:http://multimedia.33m.com/mws/mediawebs- erver?mesId=66666UF6EVsSyXTtnxf2OXMVEVtQEVs6EVs6EVs6E666666--&fn=MDI_Protocols.pdf 3M ESPE(2012). 3M™ ESPE™ MDI, Mini dental implants technical data sheet. Accessed on 6/30/2013 at: http://solutions.3m.com/wps/portal/3M/en_US/3M-ES- -PE-NA/dental-professionals/products/category/implant/ Aranyarachkul P, Caruso J, Gantes B, Schulz E, Riggs M, Dus I, et al. (2005). Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants 20:416-624. Balkin BE, Steflik DE, Naval F (2001). Mini-dental implant insertion with the auto-advance technique for ongoing applications. J Oral Implantol 27:32-37. Barber HD, Seckinger RJ (1994). The role of the small-diameter dental implant: a preliminary report on the Miniplant system. Compendium 15:1390-1392. Barros SE, Janson G, Chiqueto K, Garib DG, Janson M (2011). Effect of mini-implant diameter on fracture risk and self-drilling efficacy. Am J Orthod Dentofacial Orthop 140:e181-92. Baumgaertel S (2010). Predrilling of the implant site: Is it necessary for orthodontic mini-implants? Am J Orthod Dentofacial Orthop 137:825-829. Beer A, Gahleitner A, Holm A, Birkfellner W, Homolka P (2007). Adapted preparation technique for screw-type implants: explorative in vitro pilot study in a porcine bone model. Clin Oral Implants Res 18:103-107. Beer A, Gahleitner A, Holm A, Tschabitscher M, Homolka P (2003). Correlation of I nsertion torques with bone mineral density from dental quantitative CT in the mandible. Clin Oral Implants Res 14:616-620. Bischof M, Nedir R, Szmukler-Moncler S, Bernard JP, Samson J (2004). Implant stability measurement of delayed and immediately loaded implants during healing. Clin Oral Implants Res 15:529-539. Branemark PI, editor, Zarb GA, Albrektsson T (1985). Tissue-Integrated Prostheses: Osseointegration In Clinical Dentistry. Chicago, IL: Quintessence publishing co.,INC. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991). Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889-902. Chen Y, Kyung HM, Gao L, Yu WJ, Bae EJ, Kim SM (2010). Mechanical properties of self-drilling orthodontic micro-implants with different diameters. Angle Orthod 80:821-827. Chong L, Khocht A, Suzuki JB, Gaughan J (2009). Effect of implant design on initial stability of tapered implants. J Oral Implantol 35:130-135. Christensen GJ (2008). Critical appraisal. Mini implants: good or bad for long-term service? J Esthet Restor Dent 20:343-348. Devlin H, Horner K, Ledgerton D (1998). A comparison of maxillary and mandibular bone mineral densities. J Prosthet Dent 79:323-327. Esposito M, Hirsch JM, Lekholm U, Thomsen P (1998). Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 106:721-764. Flanagan D, Ilies H, McCullough P, McQuoid S (2008). Measurement of the fatigue life of mini dental implants: a pilot study. J Oral Implantol 34:7-11. Flanagan D, Mascolo A (2011). The mini dental implant in fixed and removable prosthetics: a review. J Oral Implantol 37(Spec):123-132. Friberg B, Sennerby L, Meredith N, Lekholm U (1999). A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Int J Oral Maxillofac Surg 28:297-303 Griffitts TM, Collins CP, Collins PC (2005). Mini dental implants: an adjunct for retention, stability, and comfort for the edentulous patient. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100:e81-84. Homolka P, Beer A, Birkfellner W, Nowotny R, Gahleitner A, Tschabitscher M, et al. (2002). Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles: pilot study. Radiology 224:247-252. Horner K, Devlin H (1998). The relationships between two indices of mandibular bone quality and bone mineral density measured by dual energy X-ray absorptiometry. Dentomaxillofac Radiol 27:17-21. Huang HL, Tu MG, Fuh LJ, Chen YC, Wu CL, Chen SI, et al. (2010). Effects of elasticity and structure of trabecular bone on the primary stability of dental implants. J Med Biol Eng 30: 85-89. Ikumi N, Tsutsumi S (2005). Assessment of correlation between computerized tomography values of the bone and cutting torque values at implant placement: a clinical study. Int J Oral Maxillofac Implants 20:253-260. Ilser Turkyilmaz, editor (2011). Implant dentistry-a rapidly evolving practice. In: Implant stability - Measuring devices and randomized clinical trial for ISQ value change pattern measured from two different directions by magnetic RFA. Jong-Chul Park, Jung-Woo Lee, Soung-Min Kim and Jong-Ho Lee. Rijeka, Croatia: InTech. Kanie T, Nagata M, Ban S (2004). Comparison of the mechanical properties of 2 prosthetic mini-implants. Implant Dent 13:251-256. Klemetti E, Vainio P(1993). Effect of bone mineral density in skeleton and mandible on extraction of teeth and clinical alveolar height. J Prosthet Dent 70:21-25. Laney WR, editors (2007). Glossary of oral and maxillofacial implants. Chicago: Quintessence Publishing . pp. 40, 102, 113, 133. Lee NK, Baek SH (2010). Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone. Am J Orthod Dentofacial Orthop 138:8.e1-8 Lee, Yen-Ping(2007). Analyzing the correlation between density of artificial bone and profile of cutting resistance with 3.3 mm screw tap. 未出版碩士論文. National Taiwan University, Taipei. Meredith N (1998). Assessment of implant stability as a prognostic determinant. Int J Prosthodont 11:491-501. Misch CE (1999). Contemporary Implant Dentistry. 2nd ed. St Louis: Mosby Co; p.372–379. Misch CE (2005). Dental implant prosthetics. St. Louis: Mosby Co; p.130-141. Misch CE, Qu Z, Bidez MW (1999). Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 57:700-706. Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T (2005). Influence of cortical bone thickness and implant length on implant stability at the time of surgery-clinical, prospective, biomechanical, and imaging study. Bone 37:776-780. Niimi A, Ozeki K, Ueda M, Nakayama B (1997). A comparative study of removal torque of endosseous implants in the fibula, iliac crest and scapula of cadavers: preliminary report. Clin Oral Implants Res 8:286-289. Norton MR, Gamble C (2001). Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 12:79-84. Orenstein IH, Tarnow DP, Morris HF, Ochi S (1998). Factors affecting implant mobility at placement and integration of mobile implants at uncovering. J Periodontol 69:1404-1412. Park HS, Lee YJ, Jeong SH, Kwon TG (2008). Density of the alveolar and basal bones of the maxilla and the mandible. Am J Orthod Dentofacial Orthop 133:30-37. Polat P, Ceylan G, Suma S, Yanikoğlu N (2001). The effects of tooth extraction on cortical thickness and bone mineral density of the mandible: evaluation with computerized tomography. Turk J Med Sci 31:271-274. SawboneR (2013). Biomechanical test materials. Accessed on 6/30/2013 at: http://www.sawbones.com/catalog/pdf/biomechanical.pdf Schrank GE, Hansen TM (2012). Dynamic fatigue testing of narrow diameter dental implants. J Dent Res 91 (Spec. Iss. A): 349. Schwartz-Dabney CL, Dechow PC (2001). Edentulation alters material properties of cortical bone in the human mandible. J Dent Res 81:613-617. Sendax VI (1996). Mini-implants as adjuncts for transitional prostheses. Dent Implantol Update 7:12-15. Shatkin TE, Petrotto CA (2012). Mini dental implants: a retrospective analysis of 5640 implants placed over a 12-year period. Compend Contin Educ Dent 33( Spec 3):2-9. Shatkin TE, Shatkin S, Oppenheimer BD, Oppenheimer AJ (2007). Mini dental implants for long-term fixed and removable prosthetics: a retrospective analysis of 2514 implants placed over a five-year period. Compend Contin Educ Dent 28:92-99. Tabassum A, Meijer GJ, Wolke JG, Jansen JA (2010). Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res 21:213-220. Todisco M, Trisi P (2005). Bone mineral density and bone histomorphometry are statistically related. Int J Oral Maxillofac Implants 20:898-904. Trisi P, Rao W (1999). Bone classification: clinical-histomorphometric comparison. Clin Oral Implants Res 10:1-7. Vidyasagar L, Apse P (2004). Dental Implant design and biological effects on bone-implant interface. Stoma Baltic Dent Maxillofac J 6:51-54. Wang HL, Ormianer Z, Palti A, Perel ML, Trisi P, Sammartino G (2006). Consensus conference on immediate loading: the single tooth and partial edentulous areas. Implant Dent 15:324-333. Wawrzinek C, Sommer T, Fischer-Brandies H (2008). Microdamage in cortical bone due to the overtightening of orthodontic microscrews. J Orofac Orthop 69:121-134. Wilmes B, Drescher D (2009). Impact of insertion depth and predrilling diameter on primary stability of orthodontic mini-implants. Angle Orthod 79:609-614. Wilmes B, Drescher D (2011). Impact of bone quality, implant type, and implantation site preparation on insertion torques of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Surg 40:697-703. 楊全斌 (2011a). 顎骨骨質(密度)分類的迷思與陷阱(上). 台灣牙醫界 30(4):20-25. 楊全斌 (2011b). 顎骨骨質(密度)分類的迷思與陷阱(下). 台灣牙醫界 30(5):19-23. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60647 | - |
| dc.description.abstract | 中文摘要
實驗目的 迷你植體在使用上有其優勢,像是手術侵犯性較小,甚至在達到一定條件後,植體可以考慮立即荷重(immediate loading)。因此植體植入後是否可到達足夠的植入扭力值,提供植體的初期穩定度,同使避免植入扭力值過大,造成植體斷裂的風險,便相當重要。植入扭力值會受到骨質(bone quality)、植體的大小形狀、表面處理、手術的方法影響。因此本篇文章便想試著去探討在不同的骨質情況下,可否建立出一套標準的鑽孔規則來達成預期之扭力值。 實驗材料與方法 在artifical test blocl的實驗中,我們以SawboneR test block做為實驗材料,並選擇不同的密度(10、20、30 pcf分別代表0.16、0.32、0.48 g/cc)來模擬不同骨密度的海綿骨,並以50 pcf(0.80 g/cc)之1~2 mm的薄層覆蓋在test block上以模擬不同厚度之皮質骨,並以直徑1.1 mm、1.5 mm的鑽針做出不同深度之預鑽孔,設定不同之鑽孔規則如下,其中1.1(數字1)-1.5(數字2),代表以1.1 mm的鑽針,鑽到(數字1)mm的深度,再以1.5 mm的鑽針,鑽到(數字2)的深度。 ★ 1.1(4); ★ 1.1(7); ★ 1.1(10); ★ 1.1(13); ★ 1.1(4)-1.5(4);★ 1.1(7)-1.5(7);★ 1.1(10)-1.5(10); ★ 1.1(13)-1.5(4);★ 1.1(13)-1.5(7);★ 1.1(13)-1.5(10); ★1.1(13)-1.5(13)。 一開始先以1.1(4)的方法做預鑽孔,然後將迷你植體(MDI,mini dental implant,IOB-13,Sendax 3M USA) 植入模擬不同骨質情況下的test block,並在植體植入過程中,每前進0.5 mm便去紀錄其扭力值,若扭力值大於45 N,則使用較深或是預鑽孔直徑較大的鑽孔規則來測試,每一個鑽孔規則皆重複五次。 在豬髂骨的模型中,首先將其粗略的分成皮質骨厚度0~1、1~2、2~3 mm的組別,而鑽孔規則如下: ★ 1.1(4);★ 1.1(13)-1.5(4);★ 1.1(13)-1.5(7);★ 1.1(13)-1.5(10); ★1.1(13)-1.5(13)。 每一個鑽孔規則皆測試至少五次,而植體植入過程中,植體每前進0.5 mm便會紀錄其扭力值的變化。而之後便會將豬髂骨進行電腦斷層掃描,以測量其皮質骨厚度以及分類骨質。 實驗結果 在人工骨模型中,10 pcf在不同皮質骨厚度的test block中,即使用最保守的鑽孔規則1.1(4),其ITRF(final insertion torque of rough surface )皆不超過35 Ncm,而在30 pcf與lamination 0~2 mm的test block中,其ITRF皆超過50 Ncm,因此需要將預鑽孔的深度加深或是直徑擴大,才有辦法達成理想之植入扭力。而也發現,將預鑽孔的直徑擴大似乎比加深深度,要來的有效率降低植入扭力。 在豬髂骨的模型中,皮質骨厚度”0~1 mm”的組別中,即使用最保守的鑽孔規則,其ITRF不超過35 Ncm,而在”1~2 mm”,”2~3 mm” 的組別中,配合不同鑽孔規則,似乎可將ITRF控制在理想範圍35~45 Ncm內,但整個植入過程中的最大扭力值可能超過45 Ncm。 結論 在不同的骨質條件下,應配合不同的鑽孔規則來控制植入扭力,以避免植體斷裂,以及達成理想之扭力值,提供植體足夠之初期穩定度。 關鍵詞:迷你人工牙根、植入扭力值、鑽孔規則 | zh_TW |
| dc.description.abstract | Abstract
Research goal The purpose of this study was to investigate the insertion torque of 2.1 mm diameter MDI implants placed with different drilling protocols in artificial bone blocks of different qualities,and in ilium bone of pig. Material and method <Artificial test block> Low to high density cancellous bone without cortical coverage were simulated using 10 pounds per cubic foot (pcf) (density: 0.16 g/cc), 20 pcf (0.32 g/cc), and 30 pcf (0.48 g/cc) polyurethane foam test blocks. Cancellous bone with a thin layer of cortical bone were simulated with laminated test blocks using a combination of 1 or 2 mm 50 pcf (density: 0.80 g/cc) polyurethane layer on 10, 20, and 30 pcf blocks. After a site preparation, mini implants (MDI,mini dental implant,IOB-13,Sendax 3M USA) were inserted into the testing blocks and insertion torque was recorded with every 0.5 mm implant advancement. In each type of test blocks, we explored the optimal drilling protocol by drilling with 1.1 mm drill in 4 mm depth first and testing the MDI insertion torque, and sequenced drilling protocols of a deeper drilling depth or a larger diameter (1.5 mm) drilling were only tested if the insertion torque was greater than 45 Ncm. Each drilling protocol was repeated for 5 times. Sequenced drilling protocols tested were listed below. The “1.1(number 1)-1.5(munber 2)” mean using the 1.1 diameter drill to the depth of (munber 1) mm, then using the 1.5 mm diameter drill to the depth of (munber 2) mm : ★ 1.1(4); ★ 1.1(7); ★ 1.1(10); ★ 1.1(13); ★ 1.1(4)-1.5(4);★ 1.1(7)-1.5(7);★ 1.1(10)-1.5(10); ★ 1.1(13)-1.5(4);★ 1.1(13)-1.5(7);★ 1.1(13)-1.5(10); ★1.1(13)-1.5(13)。 <ilium bone> In the ilium bone block test,the bone was sorted by cortical bone thickness roughly, and devided into 0~1, 1~2, 2~3 mm groups. Drilling protocol tested were listed below: ★ 1.1(4);★ 1.1(13)-1.5(4);★ 1.1(13)-1.5(7);★ 1.1(13)-1.5(10); ★1.1(13)-1.5(13)。 Each drilling protocol was repeated for 5 times, and insertion torque was recorded with every 0.5 mm implant advancement .And the bone block would use the CT scan to check the accurate cortical bone thickness and HU value for bone quality. Result: In the test block with density of 10 pcf and 0~2mm lamination, the final insertion torquefo rough surface(ITRF)would not exceed 35 Ncm, even with the most conservative site preparation of 1.1 mm drilling in 4 mm depth. In the block with density of 30 pcf and 0~2mm, the insertion torque was beyond 50 Ncm before the implant fully seated and a deeper or wider site preparation was needed. In these tested blocks, it was observed that deeper drilling usually could not reduce the insertion torque efficiently and a larger diameter preparation to reduce to insertion torque was needed. In the test group of pig ilium bone, the ITRF of 0~1 mm group did not reach 35 Ncm, even using the most conservative protocol. In the 1~2 and 2~3 mm group, the ITRF could control in the range of 35~45 Ncm when using different protocol, but during the procedure of placement, the the maximum ITR(insertion torque of rough surface) may beyoud 45 Ncm, it should be noted. Conclusion: The data suggest that drilling protocols can be and should be developed according to different bone quality for MDI implants to avoid implant fracture and achieve ideal insertion torque. Key word:Mini dental implant、insertion torque、drilling protocol. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:24:37Z (GMT). No. of bitstreams: 1 ntu-102-R99422022-1.pdf: 3597138 bytes, checksum: c7dc752b581e383b0c352c54b5cc5d2c (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
誌謝 I 中文摘要 II Abstract IV 圖目錄 IX 表目錄 XI Chapter 1 緒論 1 1.1 引言 1 1.2 文獻回顧 4 1.2.1 迷你植體斷裂 4 1.2.2 鑽孔規則、骨質對植入扭力值的影響 6 Chapter 2 研究目的 13 Chapter 3 實驗方法及程序 14 3.1 <實驗一> 不同骨質對植入扭力的影響 14 3.2 <實驗二> 探討不同鑽孔規則對植入扭力的影響 16 3.3 <實驗三> 以豬骨模型來探討理想之鑽孔規則 18 3.4 統計分析 21 Chapter 4 實驗結果 22 4.1 <實驗一> 不同骨質對植入扭力值的影響 22 4.1.1 皮質骨厚度相同的情況下,不同密度海綿骨對植入扭力值的影響 22 4.1.2 海綿骨密度相同的情況下,不同厚度皮質骨對植入扭力值的影響 24 4.2 <實驗二> 探討不同鑽孔規則對植入扭力的影響 26 4.2.1 在”0+30 pcf”組,以不同之鑽孔規則對植入扭力的影響 26 4.2.2 在”1+30 pcf”組,以不同之鑽孔規則對植入扭力的影響 27 4.2.3 在”2+30 pcf”組,以不同之鑽孔規則對植入扭力的影響 28 4.3 <實驗三> 以豬骨模型來探討理想之鑽孔規則 29 4.3.1 在”皮質骨厚度0~1 mm”組別,植入扭力值之探討 29 4.3.2 在”皮質骨厚度1~2 mm”組別,植入扭力值之探討 30 4.3.3 在”皮質骨厚度2~3 mm”組別,植入扭力值之探討 31 Chapter 5 討論 33 5.1 Test block的選擇 33 5.2 <實驗一> 不同骨質對植入扭力值的影響 34 5.3 <實驗二> 探討不同鑽孔規則對植入扭力的影響 36 5.4 <實驗三> 以豬骨模型來探討理想之鑽孔規則 39 5.5 實驗設計之限制 41 Chapter 6 結論 42 附錄一 MDI_Surgical & Restorative Protocols 95 參考文獻 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 迷你人工牙根 | zh_TW |
| dc.subject | 植入扭力值 | zh_TW |
| dc.subject | 鑽孔規則 | zh_TW |
| dc.subject | Mini dental implant | en |
| dc.subject | insertion torque | en |
| dc.subject | drilling protocol | en |
| dc.title | 直徑2.1公厘迷你植體理想鑽孔規則之分析研究 | zh_TW |
| dc.title | Investigation of Optimal Drilling Protocol for
2.1 mm Diameter MDI Implants | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王若松,許明倫 | |
| dc.subject.keyword | 迷你人工牙根,植入扭力值,鑽孔規則, | zh_TW |
| dc.subject.keyword | Mini dental implant,insertion torque,drilling protocol, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
