Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60620
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何志浩(Jr-Hau He)
dc.contributor.authorTzu-Yin Linen
dc.contributor.author林姿吟zh_TW
dc.date.accessioned2021-06-16T10:23:40Z-
dc.date.available2015-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation35

References
1. T. Mishima, M. Taguchi, H. Sakata and E. Maruyama, Solar Energy Materials
and Solar Cells 95 (1), 18-21 (2011).
2. J. P. Kleider, J. Alvarez, A. V. Ankudinov, A. S. Gudovskikh, E. V. Gushchina, M.
Labrune, O. A. Maslova, W. Favre, M. E. Gueunier-Farret, I. C. P. Roca and E. I.
Terukov, Nanoscale research letters 6 (1), 152 (2011).
3. M. Tanaka, S. Okamoto, S. Tsuge and S. Kiyama, presented at the Photovoltaic
Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003
(unpublished).
4. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H.
Sakata, E. Maruyama and M. Tanaka, Solar Energy Materials and Solar Cells 93 (6-7),
670-673 (2009).
5. K. v. Maydell, E. Conrad and M. Schmidt, Progress in Photovoltaics: Research
and Applications 14 (4), 289-295 (2006).
6. T. Sawada, N. Terada, S. Tsuge, B. Toshiaki, T. Takahama, K. Wakisaka, S.
Tsuda and S. Nakano, presented at the Photovoltaic Energy Conversion, 1994.,
Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference -
1994, 1994 IEEE First World Conference on, 1994 (unpublished).
7. M. Edwards, S. Bowden, U. Das and M. Burrows, Solar Energy Materials and
Solar Cells 92 (11), 1373-1377 (2008).
8. D. Muñoz, P. Carreras, J. Escarré, D. Ibarz, S. Martín de Nicolás, C. Voz, J. M.
Asensi and J. Bertomeu, Thin Solid Films 517 (12), 3578-3580 (2009).
9. E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller and V.
Moagar Poladian, Solar Energy Materials and Solar Cells 87 (1-4), 423-431 (2005).
10. J. Zhao, A. Wang, M. A. Green and F. Ferrazza, Applied Physics Letters 73 (14),
1991-1993 (1998).
11. Y. Inomata, K. Fukui and K. Shirasawa, Solar Energy Materials and Solar Cells
48 (1–4), 237-242 (1997).
12. P. Panek, M. Lipiński and J. Dutkiewicz, J Mater Sci 40 (6), 1459-1463 (2005).
13. K. Tsujino and M. Matsumura, Solar Energy Materials and Solar Cells 90 (10),
1527-1532 (2006).
14. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj
and J. Yi, Solar Energy Materials and Solar Cells 90 (18–19), 3085-3093 (2006).
15. C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang and B. Jiang, Applied Physics Letters
91 (23), 231105-231105-231103 (2007).
16. J. Szlufcik, F. Duerinckx, J. Horzel, E. Van Kerschaver, H. Dekkers, S. De Wolf,
P. Choulat, C. Allebe and J. Nijs, Solar Energy Materials and Solar Cells 74 (1–4),
36

155-163 (2002).
17. D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S.
Winderbaum and A. Leo, Solar Energy 76 (1-3), 277-283 (2004).
18. J. Yoo, G. Yu and J. Yi, Solar Energy Materials and Solar Cells 95 (1), 2-6
(2011).
19. Y.-T. Cheng, J.-J. Ho, S.-Y. Tsai, Z.-Z. Ye, W. Lee, D.-S. Hwang, S.-H. Chang,
C.-C. Chang and K. L. Wang, Solar Energy 85 (1), 87-94 (2011).
20. L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin and J.-H. He,
Advanced Energy Materials 1 (4), 506-510 (2011).
21. C.-A. Lin, K.-Y. Lai, W.-C. Lien and J.-H. He, Nanoscale 4 (20), 6520-6526
(2012).
22. H.-P. Wang, K.-T. Tsai, K.-Y. Lai, T.-C. Wei, Y.-L. Wang and J.-H. He, Opt.
Express 20 (S1), A94-A103 (2012).
23. X. J-Q, S. MF, K. JK, S. EF, C. M, L. S-Y, L. W and S. JA, Nature Photonics
176-179 (2007).
24. J. Zhu, C. M. Hsu, Z. Yu, S. Fan and Y. Cui, Nano letters 10 (6), 1979-1984
(2010).
25. V. E. Ferry, J. N. Munday and H. A. Atwater, Advanced materials 22 (43),
4794-4808 (2010).
26. J. Grandidier, D. M. Callahan, J. N. Munday and H. A. Atwater, Advanced
materials 23 (10), 1272-1276 (2011).
27. T. Baba, Nat. Photon. 2 (8), 465-473 (2008).
28. V. K. Narasimhan and Y. Cui, Nanophotonics 0 (0), 1-24 (2013).
29. B. Hua, Q. Lin, Q. Zhang and Z. Fan, Nanoscale (2013).
30. C.-Y. Hsu, D.-H. Lien, S.-Y. Lu, C.-Y. Chen, C.-F. Kang, Y.-L. Chueh, W.-K.
Hsu and J.-H. He, ACS Nano 6 (8), 6687-6692 (2012).
31. C.-A. Lin, K. P. Huang, S. T. Ho, M.-W. Huang and J.-H. He, Applied Physics
Letters 101 (12), 123901 (2012).
32. L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin and J.-H. He,
Advanced Energy Materials 1 (4), 505-505 (2011).
33. K. Sun, Y. Jing, N. Park, C. Li, Y. Bando and D. Wang, Journal of the American
Chemical Society 132 (44), 15465-15467 (2010).
34. Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu and A.
Javey, Nano Research 2 (11), 829-843 (2009).
35. Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu and Z. F. Liu,
Nanotechnology 16 (4), 422-428 (2005).
36. H.-C. Chang, K.-Y. Lai, Y.-A. Dai, H.-H. Wang, C.-A. Lin and J.-H. He, Energy
& Environmental Science 4 (8), 2863 (2011).
37

37. H.-P. Wang, K.-Y. Lai, Y.-R. Lin, C.-A. Lin and J.-H. He, Langmuir 26 (15),
12855-12858 (2010).
38. S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim and
J. K. Kim, Opt. Express 21 (S1), A157-A166 (2013).
39. X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim and E. F.
Schubert, Advanced Functional Materials 23 (5), 583-590 (2013).
40. .
41. A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf and C. Ballif,
IEEE Journal of Photovoltaics 3 (1), 83-89 (2013).
42. S. W. Glunz, S. Rein, J. Y. Lee and W. Warta, Journal of Applied Physics 90 (5),
2397-2404 (2001).
43. D. Macdonald and L. J. Geerligs, Applied Physics Letters 85 (18), 4061-4063
(2004).
44. L. L. Kazmerski, Renewable and Sustainable Energy Reviews 1 (1–2), 71-170
(1997).
45. Y. Nishimoto, T. Ishihara and K. Namba, Journal of The Electrochemical Society
146 (2), 457-461 (1999).
46. H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon and D. Kim, Solar Energy
Materials and Solar Cells 93 (10), 1773-1778 (2009).
47. S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang and D.-S. Wuu,
Materials Chemistry and Physics 133 (1), 63-68 (2012).
48. M. A. Green and M. J. Keevers, Progress in Photovoltaics: Research and
Applications 3 (3), 189-192 (1995).
49. U. Neuwald, H. E. Hessel, A. Feltz, U. Memmert and R. J. Behm, Surface
Science 296 (1), L8-L14 (1993).
50. H. Angermann, W. Henrion, A. Röseler and M. Rebien, Materials Science and
Engineering: B 73 (1–3), 178-183 (2000).
51. M. Z. Burrows, U. K. Das, R. L. Opila, S. De Wolf and R. W. Birkmire, Journal
of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 26 (4), 683
(2008).
52. D. H. Levi, C. W. Teplin, E. Iwaniczko, Y. Yan, T. H. Wang and H. M. Branz,
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 24 (4),
1676 (2006).
53. R. A. Sinton and A. Cuevas, Applied Physics Letters 69 (17), 2510-2512 (1996).
54. K. R. McIntosh, M. J. Cudzinovic, D. D. Smith, W. P. Mulligan and R. M.
Swanson, presented at the Photovoltaic Energy Conversion, 2003. Proceedings of 3rd
World Conference on, 2003 (unpublished).
55. D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, T. Kinoshita, M.
38

Taguchi, H. Sakata and E. Maruyama, presented at the Photovoltaic Specialists
Conference (PVSC), 2010 35th IEEE, 2010 (unpublished).
56. M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K.
Uchihashi, N. Nakamura, S. Kiyama and O. Oota, Progress in Photovoltaics:
Research and Applications 8 (5), 503-513 (2000).
57. J. Shewchun, R. Singh and M. A. Green, Journal of Applied Physics 48 (2), 765
(1977).
58. D. L. Pulfrey, Electron Devices, IEEE Transactions on 25 (11), 1308-1317
(1978).
59. W. A. Anderson, A. E. Delahoy and R. A. Milano, Appl. Opt. 15 (6), 1621-1625
(1976).
60. J. Shewchun, D. Burk and M. B. Spitzer, Electron Devices, IEEE Transactions
on 27 (4), 705-716 (1980).
61. O. Malik, F. J. De la Hidalga-W, C. Zúñiga-I and G. Ruiz-T, Journal of
Non-Crystalline Solids 354 (19-25), 2472-2477 (2008).
62. J. Shewchun, J. DuBow, C. W. Wilmsen, R. Singh, D. Burk and J. F. Wager,
Journal of Applied Physics 50 (4), 2832-2839 (1979).
63. T. Minami, T. Miyata and T. Yamamoto, Surface and Coatings Technology
108–109 (0), 583-587 (1998).
64. T. Minami, Thin Solid Films 516 (7), 1314-1321 (2008).
65. J.-S. Hong, B.-R. Rhee, H.-M. Kim, K.-C. Je, Y.-J. Kang and J. S. Ahn, Thin
Solid Films 467 (1-2), 158-161 (2004).
66. M. P. Taylor, D. W. Readey, M. F. A. M. van Hest, C. W. Teplin, J. L. Alleman,
M. S. Dabney, L. M. Gedvilas, B. M. Keyes, B. To, J. D. Perkins and D. S. Ginley,
Advanced Functional Materials 18 (20), 3169-3178 (2008).
67. Y. Hu, X. Diao, C. Wang, W. Hao and T. Wang, Vacuum 75 (2), 183-188 (2004).
68. H. Angermann, W. Henrion, M. Rebien, K. Kliefoth, D. Fischer and J. T. Zettler,
Microelectronic Engineering 36 (1–4), 43-46 (1997).
69. N. F. Mott, S. Rigo, F. Rochet and A. M. Stoneham, Philosophical Magazine Part
B 60 (2), 189-212 (1989).
70. P. d. Mierry, A. Etcheberry, R. Rizk and P. Etchegoin, J. Electrochem. Soc.
141 (1994).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60620-
dc.description.abstract本文中,我們利用擁有寬頻與全向性光擷取之微米和奈米結構於矽基異質接面太陽能電池上以提升光伏特性,並且對其光特性及少數載子複合做詳細的討論。
在第一部分,我們利用酸蝕刻與鹼性蝕刻在單晶矽上創作出金字塔/凹槽的復合式結構,並應用在非晶矽/單晶矽之異質接面太陽能電池,藉此提升光萃取以及少數載子生命週期。其太陽能電池的效率達到 15.2%,開路電壓 607 mV,短路電流 36.4 mA/cm2 。此結構可以廣泛的應用在矽晶太陽能電池,對於光電轉換效率的提升有很大的幫助。
在第二部分,我們利用熱氧法製作 SiO 2 層,成功實現 IZO/SiO 2 /Si 所製作成的半導體/絕緣體/半導體的太陽能電池,其轉換效率為 7.01%,開路電壓為 430 mV 以及短路電流 28 mA/cm2 。此外,由於氧化鋅奈米線優越的光捕獲能力,我們進一步將效率從 7.01%提升到 7.51%,短路電流密度從 28.0 增加至 30.8 mA/cm2 。
zh_TW
dc.description.abstractIn this thesis, the broadband and omnidirectional light-trapping scheme employing microscale and nanoscale structures are introduced to Si heterojunction solar cells for boosting the photovoltaic performances, and the optical and carrier recombination characteristics of the devices are discussed in detail.
In the first part, hierarchical structures consisting of grooves and pyramids are demonstrated in a-Si/c-Si heterojunction solar cells via isotropic etching followed by anisotropic etching. The structure combines the excellent photo managements and creation of long-lived minority carriers into the solar cells, showing an improved
conversion efficiency of 15.2%, an open-circuit voltage of 607 mV, and a short-circuit current density of 36.4 mA/cm2. With the superior omnidirectionality, the enhancement of power generation is up to 92% at high incident angles. Such fabrication approach of hierarchical structures open new avenues for various Si-based solar cells with improved conversion efficiency by effective light harvesting.
In the second part, semiconductor-insulator-semiconductor solar cells based on IZO/SiO2/Si can be achieved to the conversion efficiency of 7.01% with a VOC of 430 mV and a JSC of 28 mA/cm2 owing to the optimal SiO 2 layer by 5 minutes hot H2O treatment. In addition, the employment of ZnO Nanorods on IZO/Si heterojunction can improves the Jsc from 28.0 to 30.8 mA/cm2 and the efficiency from 7.01% to
7.51 % due to superior light trapping ability.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:23:40Z (GMT). No. of bitstreams: 1
ntu-102-R00941033-1.pdf: 1774849 bytes, checksum: 421711597450783afb8ab277ab3af92b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 ............................................................................................................... II
致謝 ........................................................................................................................................ III
摘要 ........................................................................................................................................ IV
Abstract ................................................................................................................................... V
Contents .............................................................................................................................. VII
List of Figures ................................................................................................................... VIII
Chapter 1 Introduction ....................................................................................................... 1
1.1 Si Heterojunction Solar Cells ............................................................................ 1
1.2 Light harvesting scheme ................................................................................... 2
References ................................................................................................................. 4
Chapter 2 Omnidirectional N-type Si Solar Cells Employing Hierarchical
Structures Consisting of Grooves and Pyramids …………………………………..8
2.1 Introduction .......................................................................................................... 8
2.2 Experiments ..................................................................................................... 11
2.3 Results and discussion ..................................................................................... 13
2.4 Summary ......................................................................................................... 33
References ............................................................................................................... 35
Chapter 3 Semiconductor-insulator-semiconductor solar cells based on ZnO and Si
heterojunction ........................................................................................................................ 39
3.1 Introduction ..................................................................................................... 39
3.2 Experiments ..................................................................................................... 42
3.3 Results and discussion ..................................................................................... 44
3.4 Summary ......................................................................................................... 56
References ............................................................................................................... 57
dc.language.isoen
dc.subject矽基異質接面太陽能電池zh_TW
dc.subject光捕獲zh_TW
dc.subject濕式蝕刻zh_TW
dc.subject載子生命週期zh_TW
dc.subject非晶矽zh_TW
dc.subject鈍化zh_TW
dc.subject氧化鋅奈米線zh_TW
dc.subjectZnO Nanorodsen
dc.subjectSi heterojunction solar cellsen
dc.subjectLight-trappingen
dc.subjectWet etchingen
dc.subjectCarrier lifetimeen
dc.subjectAmorphous siliconen
dc.subjectPassivationen
dc.title利用寬頻和全方向性之光擷取層及結構於矽基異質接面太陽能電池zh_TW
dc.titleSi Heterojunction Solar Cells Employing Broadband and
Omnidirectional Light-Harvesting Hierarchical Structures
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃昆平,吳肇欣,鐘仁傑
dc.subject.keyword矽基異質接面太陽能電池,光捕獲,濕式蝕刻,載子生命週期,非晶矽,鈍化,氧化鋅奈米線,zh_TW
dc.subject.keywordSi heterojunction solar cells,Light-trapping,Wet etching,Carrier lifetime,Amorphous silicon,Passivation,ZnO Nanorods,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved