請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高成炎 | |
| dc.contributor.author | Kuo-Chuan Huang | en |
| dc.contributor.author | 黃國權 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:22:59Z | - |
| dc.date.available | 2013-08-17 | |
| dc.date.copyright | 2013-08-17 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | REFERENCE
1. Muller N, Schwarz MJ: Neuroimmune-endocrine crosstalk in schizophrenia and mood disorders. Expert Rev Neurother 2006, 6:1017-1038. 2. Muller N, Schwarz MJ: [Immunology in schizophrenic disorders]. Nervenarzt 2007, 78:253-256, 258-260, 262-253. 3. Richard MD, Brahm NC: Schizophrenia and the immune system: pathophysiology, prevention, and treatment. Am J Health Syst Pharm 2012, 69:757-766. 4. Boyd AD, Brown D, Henrickson C, Hampton J, Zhu B, Almani F, Ben-Josef E, Zalupski M, Simeone DM, Taylor JM, et al: Screening for depression, sleep-related disturbances, and anxiety in patients with adenocarcinoma of the pancreas: a preliminary study. ScientificWorldJournal 2012, 2012:650707. 5. Linden W, Vodermaier A, Mackenzie R, Greig D: Anxiety and depression after cancer diagnosis: Prevalence rates by cancer type, gender, and age. J Affect Disord 2012. 6. Mystakidou K, Parpa E, Tsilika E, Panagiotou I, Zygogianni A, Giannikaki E, Gouliamos A: Geriatric depression in advanced cancer patients: The effect of cognitive and physical functioning. Geriatr Gerontol Int 2012. 7. Pirl WF, Greer JA, Traeger L, Jackson V, Lennes IT, Gallagher ER, Perez-Cruz P, Heist RS, Temel JS: Depression and survival in metastatic non-small-cell lung cancer: effects of early palliative care. J Clin Oncol 2012, 30:1310-1315. 8. Fond G, Macgregor A, Attal J, Larue A, Brittner M, Ducasse D, Capdevielle D: Antipsychotic drugs: pro-cancer or anti-cancer? A systematic review. Med Hypotheses 2012, 79:38-42. 9. Jablensky A, Lawrence D: Schizophrenia and cancer: is there a need to invoke a protective gene? Arch Gen Psychiatry 2001, 58:579-580. 10. Barak Y, Achiron A, Mandel M, Mirecki I, Aizenberg D: Reduced cancer incidence among patients with schizophrenia. Cancer 2005, 104:2817-2821. 11. Mortensen PB: The incidence of cancer in schizophrenic patients. J Epidemiol Community Health 1989, 43:43-47. 12. Lin GM, Chen YJ, Kuo DJ, Jaiteh LE, Wu YC, Lo TS, Li YH: Cancer Incidence in Patients With Schizophrenia or Bipolar Disorder: A Nationwide Population-Based Study in Taiwan, 1997-2009. Schizophr Bull 2011. 13. Ji J, Sundquist K, Ning Y, Kendler KS, Sundquist J, Chen X: Incidence of Cancer in Patients With Schizophrenia and Their First-Degree Relatives: A Population-Based Study in Sweden. Schizophr Bull 2012. 14. Gal G, Goral A, Murad H, Gross R, Pugachova I, Barchana M, Kohn R, Levav I: Cancer in parents of persons with schizophrenia: is there a genetic protection? Schizophr Res 2012, 139:189-193. 15. Hodgson R, Wildgust HJ, Bushe CJ: Cancer and schizophrenia: is there a paradox? J Psychopharmacol 2010, 24:51-60. 16. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L: Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008, 40:827-834. 17. Sun J, Kuo PH, Riley BP, Kendler KS, Zhao Z: Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet B Neuropsychiatr Genet 2008, 147B:1173-1181. 18. Sun J, Han L, Zhao Z: Gene- and evidence-based candidate gene selection for schizophrenia and gene feature analysis. Artif Intell Med 2010, 48:99-106. 19. Sun J, Jia P, Fanous AH, van den Oord E, Chen X, Riley BP, Amdur RL, Kendler KS, Zhao Z: Schizophrenia gene networks and pathways and their applications for novel candidate gene selection. PLoS One 2010, 5:e11351. 20. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, et al: Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012, 17:887-905. 21. Egan MF, el-Mallakh RS, Suddath RL, Lohr JB, Bracha HS, Wyatt RJ: Cerebrospinal fluid and serum levels of neuron-specific enolase in patients with schizophrenia. Psychiatry Res 1992, 43:187-195. 22. Heckers S, Heinsen H, Geiger B, Beckmann H: Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 1991, 48:1002-1008. 23. Goode DJ, Manning AA: Specific imbalance of right and left sided motor neuron excitability in schizophrenia. J Neurol Neurosurg Psychiatry 1988, 51:626-629. 24. Young KA, Holcomb LA, Yazdani U, Hicks PB, German DC: Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry 2004, 161:1270-1277. 25. Manaye KF, Lei DL, Tizabi Y, Davila-Garcia MI, Mouton PR, Kelly PH: Selective neuron loss in the paraventricular nucleus of hypothalamus in patients suffering from major depression and bipolar disorder. J Neuropathol Exp Neurol 2005, 64:224-229. 26. Schmidt K, Nolte-Zenker B, Patzer J, Bauer M, Schmidt LG, Heinz A: Psychopathological correlates of reduced dopamine receptor sensitivity in depression, schizophrenia, and opiate and alcohol dependence. Pharmacopsychiatry 2001, 34:66-72. 27. Benkert O, Grunder G, Wetzel H: Dopamine autoreceptor agonists in the treatment of schizophrenia and major depression. Pharmacopsychiatry 1992, 25:254-260. 28. Zhan L, Kerr JR, Lafuente MJ, Maclean A, Chibalina MV, Liu B, Burke B, Bevan S, Nasir J: Altered expression and coregulation of dopamine signalling genes in schizophrenia and bipolar disorder. Neuropathol Appl Neurobiol 2011, 37:206-219. 29. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP: Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002, 12:386-394. 30. Cotter DR, Pariante CM, Everall IP: Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001, 55:585-595. 31. Cotter D, Mackay D, Landau S, Kerwin R, Everall I: Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 2001, 58:545-553. 32. Ongur D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF: Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry 2008, 64:718-726. 33. Bowley MP, Drevets WC, Ongur D, Price JL: Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 2002, 52:404-412. 34. Ongur D, Drevets WC, Price JL: Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998, 95:13290-13295. 35. Maier W, Hofgen B, Zobel A, Rietschel M: Genetic models of schizophrenia and bipolar disorder: overlapping inheritance or discrete genotypes? Eur Arch Psychiatry Clin Neurosci 2005, 255:159-166. 36. Berrettini W: Bipolar disorder and schizophrenia: not so distant relatives? World Psychiatry 2003, 2:68-72. 37. Harris LW, Lockstone HE, Khaitovich P, Weickert CS, Webster MJ, Bahn S: Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Med Genomics 2009, 2:28. 38. Harris LW, Wayland M, Lan M, Ryan M, Giger T, Lockstone H, Wuethrich I, Mimmack M, Wang L, Kotter M, et al: The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS One 2008, 3:e3964. 39. Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, et al: Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 2009, 4:e4913. 40. Mehta D, Menke A, Binder EB: Gene expression studies in major depression. Curr Psychiatry Rep 2010, 12:135-144. 41. Iwamoto K, Bundo M, Kato T: Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005, 14:241-253. 42. Iwamoto K, Bundo M, Washizuka S, Kakiuchi C, Kato T: Expression of HSPF1 and LIM in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. J Hum Genet 2004, 49:227-231. 43. Choi KH, Zepp ME, Higgs BW, Weickert CS, Webster MJ: Expression profiles of schizophrenia susceptibility genes during human prefrontal cortical development. J Psychiatry Neurosci 2009, 34:450-458. 44. Kim S, Webster MJ: Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry 2010, 15:326-336. 45. Klempan TA, Ernst C, Deleva V, Labonte B, Turecki G: Characterization of QKI gene expression, genetics, and epigenetics in suicide victims with major depressive disorder. Biol Psychiatry 2009, 66:824-831. 46. Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, ffrench-Mullen J, Turecki G: Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol Psychiatry 2009, 14:175-189. 47. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, Rehal S, Klempan T, Gratton A, Benkelfat C, et al: Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 2009, 4:e6585. 48. Choi KH, Elashoff M, Higgs BW, Song J, Kim S, Sabunciyan S, Diglisic S, Yolken RH, Knable MB, Torrey EF, Webster MJ: Putative psychosis genes in the prefrontal cortex: combined analysis of gene expression microarrays. BMC Psychiatry 2008, 8:87. 49. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 2001, 98:4746-4751. 50. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ: Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 2010. 51. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, et al: Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004, 9:684-697, 643. 52. Kim S, Choi KH, Baykiz AF, Gershenfeld HK: Suicide candidate genes associated with bipolar disorder and schizophrenia: an exploratory gene expression profiling analysis of post-mortem prefrontal cortex. BMC Genomics 2007, 8:413. 53. Webster MJ, O'Grady J, Kleinman JE, Weickert CS: Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 2005, 133:453-461. 54. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003, 23:6315-6326. 55. Hsu PC, Yang UC, Shih KH, Liu CM, Liu YL, Hwu HG: A protein interaction based model for schizophrenia study. BMC Bioinformatics 2008, 9 Suppl 12:S23. 56. Lee SA, Chan CH, Chen TC, Yang CY, Huang KC, Tsai CH, Lai JM, Wang FS, Kao CY, Huang CY: POINeT: protein interactome with sub-network analysis and hub prioritization. BMC Bioinformatics 2009, 10:114. 57. Sebat J, Levy DL, McCarthy SE: Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet 2009, 25:528-535. 58. Ghazanfari N, Fernandez KJ, Murata Y, Morsch M, Ngo ST, Reddel SW, Noakes PG, Phillips WD: Muscle specific kinase: organiser of synaptic membrane domains. Int J Biochem Cell Biol 2011, 43:295-298. 59. Maselli RA, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, Gerke BJ, Soliven B, Wollmann RL: Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet 2010, 19:2370-2379. 60. Yoritaka A, Shimo Y, Inoue Y, Yoshino H, Hattori N: Nonmotor Symptoms in Patients with PARK2 Mutations. Parkinsons Dis 2011, 2011:473640. 61. Yamamura Y: The long journey to the discovery of PARK2. Neuropathology 2010. 62. Poulogiannis G, McIntyre RE, Dimitriadi M, Apps JR, Wilson CH, Ichimura K, Luo F, Cantley LC, Wyllie AH, Adams DJ, Arends MJ: PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A 2010, 107:15145-15150. 63. Verkerk AJ, Schot R, Dumee B, Schellekens K, Swagemakers S, Bertoli-Avella AM, Lequin MH, Dudink J, Govaert P, van Zwol AL, et al: Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 2009, 85:40-52. 64. Aydin D, Filippov MA, Tschape JA, Gretz N, Prinz M, Eils R, Brors B, Muller UC: Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex. BMC Genomics 2011, 12:160. 65. Anliker B, Muller U: The functions of mammalian amyloid precursor protein and related amyloid precursor-like proteins. Neurodegener Dis 2006, 3:239-246. 66. Shiozawa S, Kawai K, Okada Y, Tomioka I, Maeda T, Kanda A, Shinohara H, Suemizu H, James Okano H, Sotomaru Y, et al: Gene Targeting and Subsequent Site-Specific Transgenesis at the beta-actin (ACTB) Locus in Common Marmoset Embryonic Stem Cells. Stem Cells Dev 2011. 67. Dahlen A, Mertens F, Mandahl N, Panagopoulos I: Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun 2004, 325:1318-1323. 68. Dahlen A, Fletcher CD, Mertens F, Fletcher JA, Perez-Atayde AR, Hicks MJ, Debiec-Rychter M, Sciot R, Wejde J, Wedin R, et al: Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12). Am J Pathol 2004, 164:1645-1653. 69. Silvestre DC, Gil GA, Tomasini N, Bussolino DF, Caputto BL: Growth of peripheral and central nervous system tumors is supported by cytoplasmic c-Fos in humans and mice. PLoS One 2010, 5:e9544. 70. Corral J, Anton AI, Quiroga T, Gonzalez-Conejero R, Pereira J, Roldan V, Vicente V, Mezzano D: Influence of the F12 -4 C>T polymorphism on hemostatic tests. Blood Coagul Fibrinolysis 2010, 21:632-639. 71. Kim HJ, Kwon EH, Lee KO, Park IA, Kim SH: Novel deleterious mutation in the F12 gene in a Korean family with severe coagulation factor XII deficiency. Blood Coagul Fibrinolysis 2010, 21:683-686. 72. Gary T, Hafner F, Froehlich H, Stojakovic T, Scharnagl H, Pilger E, Brodmann M: High factor VIII activity, high plasminogen activator inhibitor 1 antigen levels and low factor XII activity contribute to a thrombophilic tendency in elderly venous thromboembolism patients. Acta Haematol 2010, 124:214-217. 73. Messiaen L, Vogt J, Bengesser K, Fu C, Mikhail F, Serra E, Garcia-Linares C, Cooper DN, Lazaro C, Kehrer-Sawatzki H: Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum Mutat 2011, 32:213-219. 74. Harder A, Titze S, Herbst L, Harder T, Guse K, Tinschert S, Kaufmann D, Rosenbaum T, Mautner VF, Windt E, et al: Monozygotic twins with neurofibromatosis type 1 (NF1) display differences in methylation of NF1 gene promoter elements, 5' untranslated region, exon and intron 1. Twin Res Hum Genet 2010, 13:582-594. 75. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, Cooper DN: The Human Gene Mutation Database: 2008 update. Genome Med 2009, 1:13. 76. Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57. 77. Kanehisa M: The KEGG database. Novartis Found Symp 2002, 247:91-101; discussion 101-103, 119-128, 244-152. 78. Kamburov A, Stelzl U, Lehrach H, Herwig R: The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 2013, 41:D793-800. 79. Campa D, Zienolddiny S, Lind H, Ryberg D, Skaug V, Canzian F, Haugen A: Polymorphisms of dopamine receptor/transporter genes and risk of non-small cell lung cancer. Lung Cancer 2007, 56:17-23. 80. Gemignani F, Landi S, Moreno V, Gioia-Patricola L, Chabrier A, Guino E, Navarro M, Cambray M, Capella G, Canzian F: Polymorphisms of the dopamine receptor gene DRD2 and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2005, 14:1633-1638. 81. Yang Z, Ma X, Wang Y, Wang J, Xiang B, Wu J, Deng W, Li M, Wang Q, Li T: Association of APC and REEP5 gene polymorphisms with major depression disorder and treatment response to antidepressants in a Han Chinese population. Gen Hosp Psychiatry 2012. 82. Kim JM, Kim SW, Stewart R, Kim SY, Shin IS, Park MH, Yoon JH, Lee JS, Park SW, Kim YH, Yoon JS: Serotonergic and BDNF genes associated with depression 1 week and 1 year after mastectomy for breast cancer. Psychosom Med 2012, 74:8-15. 83. Lee SA, Tsao TT, Yang KC, Lin H, Kuo YL, Hsu CH, Lee WK, Huang KC, Kao CY: Construction and analysis of the protein-protein interaction networks for schizophrenia, bipolar disorder, and major depression. BMC Bioinformatics 2011, 12 Suppl 13:S20. 84. McGinty EE, Zhang Y, Guallar E, Ford DE, Steinwachs D, Dixon LB, Keating NL, Daumit GL: Cancer incidence in a sample of Maryland residents with serious mental illness. Psychiatr Serv 2012, 63:714-717. 85. Barnes MR, Huxley-Jones J, Maycox PR, Lennon M, Thornber A, Kelly F, Bates S, Taylor A, Reid J, Jones N, et al: Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J Neurosci Res 2011, 89:1218-1227. 86. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, Wang XW: A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res 2010, 70:10202-10212. 87. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007, 9:166-180. 88. Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW: BIND--The Biomolecular Interaction Network Database. Nucleic Acids Res 2001, 29:242-245. 89. Goel R, Harsha HC, Pandey A, Prasad TS: Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol Biosyst 2012, 8:453-463. 90. Cesareni G, Chatr-aryamontri A, Licata L, Ceol A: Searching the MINT database for protein interaction information. Curr Protoc Bioinformatics 2008, Chapter 8:Unit 8 5. 91. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O'Donnell L, et al: The BioGRID interaction database: 2013 update. Nucleic Acids Res 2013, 41:D816-823. 92. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002, 30:303-305. 93. Zheng S, Zhao Z: GenRev: exploring functional relevance of genes in molecular networks. Genomics 2012, 99:183-188. 94. Ma Q, Chirn GW, Cai R, Szustakowski JD, Nirmala NR: Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks. BMC Bioinformatics 2005, 6:242. 95. Chen TC, Lee SA, Chan CH, Juang YL, Hong YR, Huang YH, Lai JM, Kao CY, Huang CY: Cliques in mitotic spindle network bring kinetochore-associated complexes to form dependence pathway. Proteomics 2009, 9:4048-4062. 96. Jupe S, Akkerman JW, Soranzo N, Ouwehand WH: Reactome - a curated knowledgebase of biological pathways: megakaryocytes and platelets. J Thromb Haemost 2012. 97. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH: PID: the Pathway Interaction Database. Nucleic Acids Res 2009, 37:D674-679. 98. Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R: ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 2011, 39:D712-717. 99. Sreenivasaiah PK, Rani S, Cayetano J, Arul N, Kim do H: IPAVS: Integrated Pathway Resources, Analysis and Visualization System. Nucleic Acids Res 2012, 40:D803-808. 100. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, et al: DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res 2011, 39:D1035-1041. 101. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Mewes HW: CORUM: the comprehensive resource of mammalian protein complexes--2009. Nucleic Acids Res 2010, 38:D497-501. 102. Zhao M, Sun J, Zhao Z: TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res 2013, 41:D970-976. 103. Catts VS, Catts SV: Apoptosis and schizophrenia: is the tumour suppressor gene, p53, a candidate susceptibility gene? Schizophr Res 2000, 41:405-415. 104. Cui DH, Jiang KD, Jiang SD, Xu YF, Yao H: The tumor suppressor adenomatous polyposis coli gene is associated with susceptibility to schizophrenia. Mol Psychiatry 2005, 10:669-677. 105. Aoki K, Taketo MM: Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 2007, 120:3327-3335. 106. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W: Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012, 149:1269-1283. 107. Shiota S, Tochigi M, Shimada H, Ohashi J, Kasai K, Kato N, Tokunaga K, Sasaki T: Association and interaction analyses of NRG1 and ERBB4 genes with schizophrenia in a Japanese population. J Hum Genet 2008, 53:929-935. 108. Aberg KA, Liu Y, Bukszar J, McClay JL, Khachane AN, Andreassen OA, Blackwood D, Corvin A, Djurovic S, Gurling H, et al: A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 2013, 70:1-9. 109. Yang Y, Xiao Z, Chen W, Sang H, Guan Y, Peng Y, Zhang D, Gu Z, Qian M, He G, et al: Tumor suppressor gene TP53 is genetically associated with schizophrenia in the Chinese population. Neurosci Lett 2004, 369:126-131. 110. Yin F, Liu X, Li D, Wang Q, Zhang W, Li L: Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncol Rep 2013, 30:3-10. 111. Guan X, Wang LE, Liu Z, Sturgis EM, Wei Q: Association between a rare novel TP53 variant (rs78378222) and melanoma, squamous cell carcinoma of head and neck and lung cancer susceptibility in non-Hispanic Whites. J Cell Mol Med 2013. 112. Pagano M: Cell cycle regulation by the ubiquitin pathway. FASEB J 1997, 11:1067-1075. 113. Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P, Reinberg D: PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 2005, 18:83-96. 114. Specenier P, Vermorken JB: Cetuximab: its unique place in head and neck cancer treatment. Biologics 2013, 7:77-90. 115. Arnold D, Stein A: New developments in the second-line treatment of metastatic colorectal cancer: potential place in therapy. Drugs 2013, 73:883-891. 116. Huang YC, Liu CY, Lu HJ, Liu HT, Hung MH, Hong YC, Hsiao LT, Gau JP, Liu JH, Hsu HC, et al: Comparison of prognostic models for patients with diffuse large B-cell lymphoma in the rituximab era. Ann Hematol 2013. 117. Plosker GL, Figgitt DP: Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs 2003, 63:803-843. 118. Noguchi T, Ritter G, Nishikawa H: Antibody-based therapy in colorectal cancer. Immunotherapy 2013, 5:533-545. 119. Connolly R, Nguyen NK, Sukumar S: Molecular Pathways: Current Role and Future Directions of the Retinoic Acid Pathway In Cancer Prevention and Treatment. Clin Cancer Res 2013. 120. Smith W, Saba N: Retinoids as chemoprevention for head and neck cancer: where do we go from here? Crit Rev Oncol Hematol 2005, 55:143-152. 121. Carrera S, Cuadrado-Castano S, Samuel J, Jones GD, Villar E, Lee SW, Macip S: Stra6, a retinoic acid-responsive gene, participates in p53-induced apoptosis after DNA damage. Cell Death Differ 2013. 122. Wan C, Shi Y, Zhao X, Tang W, Zhang M, Ji B, Zhu H, Xu Y, Li H, Feng G, He L: Positive association between ALDH1A2 and schizophrenia in the Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33:1491-1495. 123. Wan C, Yang Y, Li H, La Y, Zhu H, Jiang L, Chen Y, Feng G, He L: Dysregulation of retinoid transporters expression in body fluids of schizophrenia patients. J Proteome Res 2006, 5:3213-3216. 124. Jones AL, Mowry BJ, Pender MP, Greer JM: Immune dysregulation and self-reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis? Immunol Cell Biol 2005, 83:9-17. 125. Fineberg AM, Ellman LM: Inflammatory Cytokines and Neurological and Neurocognitive Alterations in the Course of Schizophrenia. Biol Psychiatry 2013. 126. Frydecka D, Beszlej A, Karabon L, Pawlak-Adamska E, Tomkiewicz A, Partyka A, Jonkisz A, Monika SB, Kiejna A: The role of genetic variations of immune system regulatory molecules CD28 and CTLA-4 in schizophrenia. Psychiatry Res 2013. 127. Ferentinos P, Dikeos D: Genetic correlates of medical comorbidity associated with schizophrenia and treatment with antipsychotics. Curr Opin Psychiatry 2012, 25:381-390. 128. Rao JS, Kim HW, Harry GJ, Rapoport SI, Reese EA: Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients. Schizophr Res 2013. 129. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW: Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2009, 259:151-163. 130. Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K: Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol 2013, 14:82-89. 131. Trevillyan JM, Chiou XG, Ballaron SJ, Tang QM, Buko A, Sheets MP, Smith ML, Putman CB, Wiedeman P, Tu N, et al: Inhibition of p56(lck) tyrosine kinase by isothiazolones. Arch Biochem Biophys 1999, 364:19-29. 132. Nyakeriga AM, Garg H, Joshi A: TCR-induced T cell activation leads to simultaneous phosphorylation at Y505 and Y394 of p56(lck) residues. Cytometry A 2012, 81:797-805. 133. Yan Q, Barros T, Visperas PR, Deindl S, Kadlecek TA, Weiss A, Kuriyan J: Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol Cell Biol 2013. 134. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS: Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013, 18:206-214. 135. Huang TL: Effects of antipsychotics on the BDNF in schizophrenia. Curr Med Chem 2013, 20:345-350. 136. Xu MQ, St Clair D, Feng GY, Lin ZG, He G, Li X, He L: BDNF gene is a genetic risk factor for schizophrenia and is related to the chlorpromazine-induced extrapyramidal syndrome in the Chinese population. Pharmacogenet Genomics 2008, 18:449-457. 137. Muglia P, Vicente AM, Verga M, King N, Macciardi F, Kennedy JL: Association between the BDNF gene and schizophrenia. Mol Psychiatry 2003, 8:146-147. 138. Zhang XY, Liang J, Chen da C, Xiu MH, Yang FD, Kosten TA, Kosten TR: Low BDNF is associated with cognitive impairment in chronic patients with schizophrenia. Psychopharmacology (Berl) 2012, 222:277-284. 139. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ: Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 2011, 16:960-972. 140. Kantrowitz JT, Javitt DC: N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010, 83:108-121. 141. Snyder MA, Gao WJ: NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 2013, 7:31. 142. Favalli G, Li J, Belmonte-de-Abreu P, Wong AH, Daskalakis ZJ: The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res 2012, 46:1-11. 143. Yamada K, Iwayama Y, Hattori E, Iwamoto K, Toyota T, Ohnishi T, Ohba H, Maekawa M, Kato T, Yoshikawa T: Genome-wide association study of schizophrenia in Japanese population. PLoS One 2011, 6:e20468. 144. Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kaji M: Overexpression of KIAA0101 predicts poor prognosis in primary lung cancer patients. Lung Cancer 2012, 75:110-118. 145. Liu L, Chen X, Xie S, Zhang C, Qiu Z, Zhu F: Variant 1 of KIAA0101, overexpressed in hepatocellular carcinoma, prevents doxorubicin-induced apoptosis by inhibiting p53 activation. Hepatology 2012, 56:1760-1769. 146. Xie C, Wang W, Yang F, Wu M, Mei Y: RUVBL2 is a novel repressor of ARF transcription. FEBS Lett 2012, 586:435-441. 147. Li K, Ma Q, Shi L, Dang C, Hong Y, Wang Q, Li Y, Fan W, Zhang L, Cheng J: NS5ATP9 gene regulated by NF-kappaB signal pathway. Arch Biochem Biophys 2008, 479:15-19. 148. Kast RE: Profound blockage of CXCR4 signaling at multiple points using the synergy between plerixafor, mirtazapine, and clotrimazole as a new glioblastoma treatment adjunct. Turk Neurosurg 2010, 20:425-429. 149. Jia L, Shang YY, Li YY: Effect of antidepressants on body weight, ethology and tumor growth of human pancreatic carcinoma xenografts in nude mice. World J Gastroenterol 2008, 14:4377-4382. 150. Jiang SM, Wu JH, Jia L: Intervention of Mirtazapine on gemcitabine-induced mild cachexia in nude mice with pancreatic carcinoma xenografts. World J Gastroenterol 2012, 18:2867-2871. 151. Chen MH, Yang WL, Lin KT, Liu CH, Liu YW, Huang KW, Chang PM, Lai JM, Hsu CN, Chao KM, et al: Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma. PLoS One 2011, 6:e27186. 152. Zheng LT, Hwang J, Ock J, Lee MG, Lee WH, Suk K: The antipsychotic spiperone attenuates inflammatory response in cultured microglia via the reduction of proinflammatory cytokine expression and nitric oxide production. J Neurochem 2008, 107:1225-1235. 153. Chen MH, Lin KJ, Yang WL, Kao YW, Chen TW, Chao SC, Chang PM, Liu CY, Tzeng CH, Chao Y, et al: Gene expression-based chemical genomics identifies heat-shock protein 90 inhibitors as potential therapeutic drugs in cholangiocarcinoma. Cancer 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60600 | - |
| dc.description.abstract | 研究目的
精神分裂症患者的癌症發病率較低,顯示精神分裂症可能是一種對抗癌症的保護因子。為了研究兩種疾病之間的基因相關性,我們建構一個由精神分裂症和肝細胞癌的候選基因組成之蛋白質交互作用網路。藉由精神分裂症與肝癌網路(SHCN)分析,基團可被發現為潛在的功能模組或蛋白質聚合物。這項研究結果用來對照相關信息途徑資料庫如KEGG,Reactome,PID和ConsensusPathDB,等。 研究結果 SHCN中介基因的功能顯示在精神分裂症的致病機轉中,免疫系統和細胞週期調控的功能具有重要作用。例如,過度表達的精神分裂症候選基因,SIRPB1,SYK和LCK,負責信號傳導的細胞激素的產生,精神分裂症的病因學機制相關的免疫反應則與IL-2和TREM-1/DAP12通路有關。藉由尋找FDA核准的藥物的目標基因中發現潛在的蛋白複合物和途徑並提出新的治療方法。研究結果發現,維生素A,視黃素和其他的免疫反應藥劑與其編碼基因:RARA, LCK基因可能具有潛在治療精神分裂症和肝細胞癌的效果。 研究結論 這是首篇精神分裂症與肝癌的基因網路顯示特定中介基因可能有抑制腫瘤的研究。研究並顯示精神分裂症蛋白質相互作用及調控癌症之免疫系統對精神分裂症致病因素的重要性。 | zh_TW |
| dc.description.abstract | ABSTRACT
Background Schizophrenic patients show lower incidences of cancer, implicating schizophrenia may be a protective factor against cancer. To study the genetic correlation between the two diseases, a specific PPI network was constructed with candidate genes of schizophrenia and hepatocellular carcinoma. The network, designated schizophrenia-hepatocellular carcinoma network (SHCN) was analysed and cliques were identified as potential functional modules or complexes. The findings were compared with information from pathway databases such as KEGG, Reactome, PID and ConsensusPathDB. Results The functions of mediator genes from SHCN show immune system and cell cycle regulation have important roles in the eitology mechanism of schizophrenia. For example, the over-expressing schizophrenia candidate genes, SIRPB1, SYK and LCK, are responsible for signal transduction in cytokine production; immune responses involving IL-2 and TREM-1/DAP12 pathways are relevant for the etiology mechanism of schizophrenia. Novel treatments were proposed by searching the target genes of FDA approved drugs with genes in potential protein complexes and pathways. It was found that Vitamin A, retinoid acid and a few other immune response agents modulated by RARA and LCK genes may be potential treatments for both schizophrenia and hepatocellular carcinoma. Conclusions This is the first study showing specific mediator genes in the SHCN may suppress tumor. We also show that the schizophrenic protein interactions and modulation with cancer implicates the importance of immune system for etiology of schizophrenia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:22:59Z (GMT). No. of bitstreams: 1 ntu-102-D94922009-1.pdf: 2100896 bytes, checksum: 56551a58309b623241ba509540a3ab9f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 1 中文摘要 2 ABSTRACT 3 Background 3 Results 3 Conclusions 4 CONTENTS 5 LIST OF FIGURES 8 LIST OF TABLES 9 Chapter 1 Introduction 10 1.1 Schizophrenia as a protective factor for cancers 10 1.2 Discovery of schizophrenic candidate genes 11 1.3 Shared disease mechanism and core function module of mental diseases 12 1.4 Analysis tools for network biology 16 1.5 The over- and under- expression level of genetic interactions between schizophrenia and hepatocellular carcinoma 16 1.6 Cancer genetic network interaction with dopaminergic- and serotoninergic-related genes 17 Chapter 2 Method 20 2.1 Schizophrenia related genetic information 20 2.2 Selection of schizophrenic candidate genes by microarray data 22 2.3 Cancer-related genes by microarray 22 2.4 Construction of schizophrenia and cancer network 23 2.5 Selection of candidate genes, complexes and modularity from SHCN 24 2.6 Analysis of schizophrenic pathways and drugs 25 2.7 Potential drugs or complexes related to tumor suppression 26 Chapter 3 Results 27 3.1 Schizophrenia candidate genes related to tumor suppression 27 3.2 The overlapped genes in schizophrenic genetic network 28 3.3 Analysis of the schizophrenic genetic network with different expression levels by human protein-protein interactions 28 3.4 Modularity and complex analysis of SHCN 30 3.5 The immune-related pathway responsible for pathological mechanism of schizophrenia 34 3.6 Discovery of candidate drugs or treatments for both schizophrenia and cancer 37 Chapter 4 Discussion 41 4.1 Schizophrenia and the immune system 42 4.2 Putative association of SIRPB1-LCK-SYK genes in SHCN 42 4.3 Schizophrenia and IL-2/TREM-1 pathway 43 4.4 BDNF and schizophrenia 43 4.5 KIAA0101 and schizophrenia 45 4.6 Potential candidate drugs for cancer network associated with HTR2A or DRD2 genes 46 Chapter 5 Conclusions 48 5.1 Core functional module and disease mechanism for mental disorders 48 5.2 The potential immune pathways for SHCN 48 REFERENCE 50 | |
| dc.language.iso | en | |
| dc.subject | 蛋白質交互作用 | zh_TW |
| dc.subject | 基因網路 | zh_TW |
| dc.subject | 精神分裂症 | zh_TW |
| dc.subject | 肝癌 | zh_TW |
| dc.subject | genetic network | en |
| dc.subject | protein protein interaction | en |
| dc.subject | hepatocellular carcinoma | en |
| dc.subject | schizophrenia | en |
| dc.title | 分析精神分裂症及癌症之基因網路:發掘潛在抑癌效果之路徑及藥物 | zh_TW |
| dc.title | Analysis of the Genetic Network for Schizophrenia and Cancers: Discovery of Potential Pathways and Drugs for Tumor Suppression Effect | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡懷寬,賴飛羆,黃宣誠,魏凌鴻,林泰元 | |
| dc.subject.keyword | 基因網路,蛋白質交互作用,肝癌,精神分裂症, | zh_TW |
| dc.subject.keyword | genetic network,protein protein interaction,hepatocellular carcinoma,schizophrenia, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
