Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6051
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢(Zueng-Sang Chen)
dc.contributor.authorChia-Chen Hsuen
dc.contributor.author許嘉珍zh_TW
dc.date.accessioned2021-05-16T16:20:05Z-
dc.date.available2013-08-14
dc.date.available2021-05-16T16:20:05Z-
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-06
dc.identifier.citation中央氣象局。2012。十月氣象資料。http://www.cwb.gov.tw/V7/climate/monthlyData/mD.htm
中華肥料協會。2005。作物施肥手冊。中華肥料協會編印。
林國清。2004。水稻新品種臺南11號之育成。臺南區農業改良場研究彙報45:1-25。
行政院農委會農糧署。2012。肥料種類品目及規格。行政院農委會農糧署網站。http://www.afa.gov.tw/laws_index.asp?CatID=228
行政院農業委員會。1999。農作物中重金屬監測基準資料之建立。臺灣省農業藥物毒物試驗所編印。
行政院農委會農糧署。2012。臺灣地區稻米生產量調查業務簡訊。行政院農委會農糧署網站http://www.afa.gov.tw/GrainStatistics_index.asp?CatID=140
行政院環保署。2003。土壤重金屬檢測方法-王水消化法。NIEA S321.63B。中華民國92年7月1日環署檢字第0920047102號公告。
李建捀、陳榮五、陳世雄。2005。有機質肥料對水田土壤與水稻生育的影響。有機質肥料之施用對土壤與作物品質之影響研討會論文集。國立臺灣大學農業化學系編印。p. 105-114。
林浩潭。1991。以作物重金屬容許含量推算土壤中重金屬容許含量之探討。國立中興大學。臺中市。
許永瑜。1990。鋅鉻對水稻與蔬菜在臺灣主要土類中毒害臨界濃度之探討。國立中興大學。臺中市。
Accioly, A. M. A., J. O. Siqueira, N. Curi, and F. M. S. Moreira. 2004. Lime amelioration of zinc and cadmium toxicities for eucalyptus camaldulensis seedlings cultivated in contaminated soil. Rev. Bras. Cienc. Solo 28: 775-783.
Alloway, B. J. 1995. Heavy metals in the soil. Blackie academic and professional, Glasgow, UK.
Baker, A. J. M., S. P. McGrath, C. M. D. Sidoli, and R.D. Reeves. 1994. The possibility of in-situ heavy-metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11: 41-49.
Barcan, V., and E. Kovnatsky. 1998. Soil surface geochemical anomaly around the copper-nickel metallurgical smelter. Water Air Soil Pollut. 103: 197-218.
Basta, N. T., and S. L. Mcgowen. 2004. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut. 127: 73-82.
Besnard, E., C. Chenu, and M. Robert. 1999. Distribution of Copper in champagne vineyards soils, as influenced by organic amendments. Proc. 5th Int. Conf. Biogeochem. Trace Elements. Vienna.
Bhattacharyya, P., A. Chakraborty, K. Chakrabarti, S. Tripathy, and M.A. Powell. 2006. Copper, and zinc uptake by rice and accumulation in soil amended with municipal solidwaste compost. Environ. Geol. 49: 1064-1070.
Brar, M. S., and G. S. Sekhon. 1976. Interaction of zinc with other micro-nutrient cations: effect of copper on zinc absorption by wheat seedlings and its translocation within plants. Plant Soil 45: 137-143.
Cao, X. D., A. Wahbi, L. N. Ma, B. Li, and Y. L. Yang. 2009. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J. Hazard. Mater. 164: 555-564.
Cavallaro, N., and M. B. McBride. 1978. Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Sci. Soc. Am. J. 42: 550-556.
Chaudhry, F. M., M. Sharif, A. Latif, and R.H. Qureshi. 1973. Zinc-copper antagonism in nutrition of rice (Oryza sativa L). Plant Soil 38: 573-580.
Chen, Y. X., Y. P. Wang, W. X. Wu, Q. Lin, and S. G. Xue. 2006. Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Sci. Total Environ. 356: 247-255.
Chen, Z. S., and D. Y. Lee. 1995. Heavy metlas contents of representative agricultural soils in Taiwan. J. Chin. Inst. Chem. Eng, 5: 205-211.
Chen, Z. S., G. J. Lee, and J. C. Liu. 2000. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere. 41: 235-242.
Deabreu, C. A., B. Vanraij, M. F. Deabreu, W. R. Dossantos, and J.C. Deandrade. 1996. Efficiency of multinutrient extractants for the determination of available copper in soils. Commun. Soil Sci. Plant Anal. 27: 763-771.
Deluisa, A., P. Giandon, M. Aichner, P. Bortolami, L. Bruna, A. Lupetti, Et Al. 1996. Copper pollution in italian vineyard soils. Commun. Soil Sci. Plant Anal. 27: 1537-1548.
Fageria, N. K. 2002. Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops. Pesqui. Agropecu. Bras. 37: 1765-1772.
Faostat. 2012. Http://faostat.fao.org/
Fox, T. C., and M. L. Guerinot. 1998. Molecular biology of cation transport in plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 49: 669-696.
Gatti, M., I. A. Scotti, and S. Silva. 1991. Evaluation of soil extractants to estimate available micronutrients under wheat-field conditions. Commun. Soil Sci. Plant Anal. 22: 1883-1893.
Gardner, W. H. 1986. Water content. P. 493-544. in A. Klute et al. (eds.). Methods of soil analysis. Part 1. physical and mineralogical method. Second edition. Agronomy monograph 9. Madison, Wisconsin, USA.
Gee, G. W., and J. W. Bauder. 1986. Partical-size analysis. P. 382-412. in A. Klute et al. (eds.). Methods of soil analysis. Part 1. physical and mineralogical method. Second edition. Agronomy monograph 9. Madison, Wisconsin, USA.
Geebelen, W., D. C. Adriano, D. Van Der Lelie, M. Mench, R. Carleer, and H. Clijsters. 2003. Selected bioavailability assays to test the efficacy of amendment - induced immobilization of lead in soils. Plant Soil 249: 217-228.
Grill, E., E. L. Winnacker, and M. H. Zenk. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher-plants. Science 230: 674-676.
Gu, H. H., H. Qiu, T. Tian, S. S. Zhan, T. H. B. Deng, and R. L. Chaney. 2011. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza Sativa L.) Planted on multi-metal contaminated acidic soil. Chemosphere. 83: 1234-1240.
Gupta, A. K., and S. Sinha. 2006. Chemical fractionation and heavy metal accumulation in the plant of sesamum indicum (L.) Var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere. 64: 161-173.
Hooda, P. S., D. Mcnulty, B. J. Alloway, and M. N. Aitken. 1997. Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge. J. Sci. Food Agric. 73: 446-454.
Hseu, Z. Y., S. W. Su, H. Y. Lai, H. Y. Guo, T. C. Chen, and Z. S. Chen. 2010. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci. Plant Nutr. 56: 31-52.
Huang, J. H., S. H. Hsu, and S. L. Wang. 2011. Effects of rice straw ash amendment on cu solubility and distribution in flooded rice paddy soils. J. Hazard. Mater. 186: 1801-1807.
Johnson, A., and N. Singhal. 2010. Amendment-enhanced phytoextraction of soil contaminants. Nova science press, Inc, New York.
Jones, J. B., Jr., and V. W. Case. Sampling, handling, and analyzing plant tissue samples. 1990. p.389-427. In R.L. Westerman (ed.). Soil Testing and Plant Analysis. 3rd edition, Soil Science Society of America, Book series No.3.
Kabata-Pendias, A., and H. Pendias. 2001. Trace Elements In Soils and Plants. 3rd Ed. CRC Press, Boca Raton, Florida.
Khan, M. J., and D. L. Jones. 2008. Chemical and organic immobilization treatments for reducing phytoavailability of heavy metals in copper-mine tailings. J. Plant Nutr. Soil Sci. 171: 908-916.
Khan, M. J., and D. L. Jones. 2009. Effect of composts, lime and diammonium phosphate on the phytoavailability of heavy metals in a copper mine tailing soil. Pedosphere 19: 631-641.
Kim B. and M. B. McBride. 2009. Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions. J Environ. Qual. 38: 2253-2259.
Kuo, S., E. J. Jellum, and A. S. Baker. 1985. Effects of soil type, liming, and sludge application on zinc and cadmium availability to swiss chard. Soil Sci. 139: 122-130.
Lee, S. H., J. S. Lee, Y. J. Choi, and J.G. Kim. 2009. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77: 1069-1075.
Lee, T. M., H. Y. Lai, and Z. S. Chen. 2004. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere 57: 1459-1471.
Lindsay, W. L., and W. A. Norvell. 1978. Development of a dtpa soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42: 421-428.
Liu, C. L., Wang, Y. P., Liao, Y. L.,Wu, C. R., Huang, C. H., Sung, C. C., and Lee, C. 1998. Report of soil and fertilizer experimental series in 1998. Taiwan: Council of Agriculture, Executive Yuan.
Luo, Y. M., and D. L. Rimmer. 1995. Zinc copper interaction affecting plant-growth on a metal-contaminated soil. Environ. Pollut. 88: 79-83.
Luo, Y. M., W. D. Yan, P. Christie. 2001. Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by γ-irraditaion and Cu-Zn interaction. Chemosphere. 42: 179-184.
Madejon, P., P. Burgos, F. Cabrera, and E. Madejon. 2009. Phytostabilization of amended soils polluted with trace elements using the mediterranean shrub: rosmarinus officinalis. Int. J. Phytoremediat. 11: 542-557.
Martinez, C. E., and H. L. Motto. 2000. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 107: 153-158.
McBride, M. B., 1989. Reactions controlling heavy metal solubility in soils. Adv. Soil Sci. 10: 1–56.
McBride, M. B., M. Pitiranggon, and B. Kim. 2009. A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil. Soil Sci. 174: 439-444.
McBride, M., S. Sauve, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. 48: 337-346.
McLaughlin, M. J., B. A. Zarcinas, D. P. Stevens, and N. Cook. 2000. Soil testing for heavy metals. Commun. Soil Sci. Plant Anal. 31: 1661-1700.
Mench, M. J., V. L. Didier, M. Loffler, A. Gomez, and P. Masson. 1994. A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J. Environ. Qual. 23: 58-63.
Mohamed, I., B. Ahamadou, M. Li, C.X. Gong, P. Cai, and W. Liang . 2010. Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials. J. Soils Sediments 10: 973-982.
Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961-110. In D. L. Sparks, A. L. Page, P. A. Helmake, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner (ed.) Methods of soil analysis, Par 3. ASA and SSSA, Madison, WI, USA.
Novozamsky, I., T. M. Lexmond, and V. J. G. Houba. 1993. A single extraction procedure of soil for evaluation of uptake of some heavy-metals by plants. Int. J. Environ. Anal. Chem. 51: 47-58.
Nriagu, J. O. 1984. Formation and stability of base metal phosphates in soils and sediments. Pp. 318–329. In Nriagu, J. O., and Moore, P. B. (eds.) Phosphate minerals. Springer-verlag, Berlin.
Nriagu, J. O., and T. S. Lin. 1995. Trace metals in wild rice in the united states. Sci. Total Environ. 172: 223-228.
Oste, L. A., T. M. Lexmond, and W. H. Van Riemsdijk. 2002. Metal immobilization in soils using synthetic zeolites. J. Environ. Qual. 31: 813-821.
Padmavathiamma, P. K., and L.Y. Li. 2007. Phytoremediation technology: hyper- accumulation metals in plants. Water Air Soil Pollut. 184: 105-126.
Pip, E. 1993. Cadmium, copper, and lead in wild rice from central canada. Arch. Environ. Contam. Toxicol. 24: 179-181.
Paradelo, R., A. Villada, and M. T. Barral. 2011. Reduction of the short-term availability of copper, lead and zinc in a contaminated soil amended with municipal solid waste compost. J. Hazard. Mater. 188: 98-104.
Paugh, R. E., Dick, D. G., and Fredeen, A. L. 2002. Heavy metal (Pb, Zn Cd, Fe and Cu) contents of plant foliage near the Anvil range lead/zinc mine, Faro, Yukon Territory.
Ecotox. Environ. Safe. 52: 273-279.
Raskin I, Ensley B. D. 2000. Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, Inc., New York.
Rizzi, L., G. Petruzzelli, G. Poggio, and G.V. Guidi. 2004. Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere. 57: 1039-1046.
Romkens, P. F. A. M., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., and Koopmans, G. F. 2009. Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines. Environ. Pollut. 157: 2435-2444.
Sarkunan, V., A. K. Misra, and P. K. Nayar. 1989. Interaction of zinc, copper and nickel in soil on yield and metal content in rice. J. Environ. Sci. Health, Part A: Environ. Sci. Eng. Toxic Hazard. Subst. Control 24: 459-466.
Shoemaker, H. E., E. O. Mclean, and P.E. Pratt. 1961. Buffer methods for determining the lime requirement of soils with appreciable amounts of extractable aluminum. Soil Sci. Soc. Am. Proc. 25:274-277.
Soil Survey Staff. 2010. Keys to Soil Toxonomy. Eleventh ed. USDA Natural Resources Coservation Service. Washington, DC, USA.
Soriano-Disla, J. M., I. Gomez, J. Navarro-Pedreno, and A. Lag-Brotons. 2010. Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge. Plant Soil 327: 303-314.
Thomas, G. W. 1996. Soil pH and soil acidity. P. 475-490. in: D. L. Sparks et al. (eds.). Methods of soil analysis. Part 3. chemical and microbiological properties. Second edition. Agronomy monograph 9. Madison, Wisconsin, USA.
Ure, A. 1995. Heavy Metals In Soil. 2nd Ed. Blackie Academic & Professiona, Glasgow.
Van Erp, P. J., and P. Van Lune. 1991. Long-term heavy metal leaching from soils-sewage sludge and soil/sewage mixtures. Environ. Sci. Technol. 25: 706-711.
Wallace, A., E. M. Romney, G.V. Alexander, and J. Kinnear. 1977. Phytotoxicity and some interactions of essential trace-metals iron, manganese molybdenum, zinc, copper, and boron. Commun. Soil Sci. Plant Anal. 8: 741-750.
Wang, X. X., P. Li, T. L. Zhang, D. M. Zhou, and Y. Q. He. 2009. Distribution and accumulation of copper and cadmium in soil-rice system as affected by soil amendments. Water Air Soil Pollut. 196: 29-40.
Weast, R. C. (Ed.), 1977. CRC Handbook Of Chemistry and Physics, 58th Ed. CRC Press, Cleveland, OH.
Weis, J. S., T. Glover, and P. Weis. 2004. Interactions of metals affect their distribution in tissues of phragmites australis. Environ. Pollut. 131: 409-415.
WHO. 2012. http://www.who.int/en/
Wong, M. H. 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere. 50: 775-780.
Yoo, M. S., and B. R. James. 2003. Zinc extractability and plant uptake in flooded, organic waste-amended soils. Soil Sci. 168: 686-698.
Zeng, F. R., S. Ali, H. T. Zhang, Y. B. Ouyang, B. Y. Qiu, F. B. Wu, Et Al. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 159: 84-91.
Zhang, M. K., Z. Y. Liu, and H. Wang. 2010. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal. 41: 820-831.
Zhang, X. W., L. S. Yang, Y. H. Li, H. R. Li, W. Y. Wang, and B. X. Ye. 2012. Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess. 184: 2261-2273.
Zhao, K. L., X. M. Liu, W. W. Zhang, J. M. Xu, and F. Wang. 2011. Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale. J. Soils Sediments 11: 1165-1177.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6051-
dc.description.abstract化學固定法可用於整治銅鋅汙染土壤,進而降低作物體中銅和鋅的含量。然而,前人研究多著重於尋找有效改良劑以降低作物體中銅和鋅的濃度,並未探討施用改良劑後,作物體中銅和鋅之相互作用。本研究目的為瞭解施用石灰與堆肥後,作物體與土壤中銅和鋅之相互作用,並以三種萃取劑預測作物體中銅和鋅的濃度。本研究選用水稻臺南 11 號(Oryza sativa L. Tainan 11)及青梗白菜Brassica chinensis L. cv. Ching-Geeng)兩種作物,種植於國立臺灣大學人工氣候實驗室。土壤添加三種銅濃度分別為 0、75 與 150 mg/kg,添加三種鋅濃度分別為 0、200 與 400 mg/kg,添加三種改良劑分別為未施用、施用石灰(調整 pH 至 6.8)與施用堆肥(60 ton/ha ),所有處理均施用化學肥料,並進行四重複。
研究結果顯示,未施用改良劑與施用石灰下,銅和鋅的相互作用對穀粒產量無影響。然而施用堆肥下,銅和鋅的相互作用對穀粒產量有顯著影響,且混合添加銅和鋅會使穀粒產量下降。銅和鋅的相互作用影響水稻各部位中銅和鋅的程度為:糙米 > 地上部 ≧ 稻根。不管有無施用石灰或堆肥,添加銅濃度 75 或 150 mg/kg 的土壤,再添加鋅 400 mg/kg,會促進糙米吸收銅。添加鋅濃度 200或 400 mg/kg的土壤,再添加銅 75 或 150 mg/kg,大致上不會促進糙米吸收鋅。所以添加鋅對糙米吸收銅的影響較大,添加銅對糙米吸收鋅的影響較小。
未施用改良劑下,銅和鋅的相互作用會影響青梗白菜的重量,混合添加銅和鋅會使青梗白菜重量降低。施用石灰與堆肥後,添加銅或鋅則對青梗白菜重量無影響。未施用改良劑下,添加銅濃度 75 mg/kg或 150 mg/kg 的土壤,再添加鋅200 或 400 mg/kg,會抑制青梗白菜吸收銅。不管有無施用石灰或堆肥,添加鋅濃度0、200 或 400 mg/kg 的土壤,再添加銅 75 或 150 mg/kg,不會促進青梗白菜吸收鋅。所以添加鋅會抑制青梗白菜吸收銅,添加銅不會影響青梗白菜吸收鋅。
大致上,不管有無施用改良劑,添加銅並不會促進或抑制 0.05 M EDTA 與 0.005 M DTPA 可萃取鋅濃度,反之亦然。未施用改良劑下,添加鋅會促進 0.01 M CaCl2 可萃取銅濃度,添加銅也會促進 0.01 M CaCl2 可萃取鋅濃度。施用石灰與堆肥後,添加鋅或銅則不會促進 0.01 M CaCl2可萃取銅或鋅濃度。
不管有無施用改良劑,0.05 M EDTA 及 0.005 M DTPA可萃取銅濃度可預測糙米及青梗白菜中銅的濃度。未施用改良劑下,0.05 M EDTA、0.005 M DTPA 及 0.01 M CaCl2 可萃取鋅濃度可預測糙米中鋅的濃度。不管有無施用改良劑,0.05 M EDTA、0.005 M DTPA 及 0.01 M CaCl2 可萃取鋅可預測梗白菜中鋅的濃度。
zh_TW
dc.description.abstractChemical stabilization have been used to remediate copper (Cu) and zinc (Zn) contaminated soil for the purpose of reducing the Cu and Zn concentration of crops. However, previous studies emphasized on finding efficient amendments to reduce Cu and Zn concentration of crops, few of them investigated Cu-Zn interaction of crops and soil after applying lime or compost. The objective of this research aims to understand the Cu-Zn interaction of crops and soil after applying lime or compost, as well as predicting Cu and Zn concentration of crops by using three extractants. Rice (Oryza sativa L. Tainan 11) and Bok Coy (Brassica chinensis L. cv. Ching-Geeng) were chosen. Three spiked Cu concentration are 0 mg/kg, 75 mg/kg, and 150 mg/kg; three spiked Zn concentration are 0 mg/kg, 200 mg/kg, and 400 mg/kg; three amendments are no amendment (NA), lime, and compost. Chemical fertilizer was applied to every treatment, and conducted in four replicates.
Results indicated that in NA and lime treatment, grain yield was not affected by Cu-Zn interaction. While under compost treatment, grain yield was significantly affected by Cu-Zn interaction, and grain yield was reduced markedly when soil was mixed with the combination of Cu and Zn.
The effect of Cu-Zn interaction on Cu and Zn concentration in different parts of rice are as follows: brown rice > shoot ≒ root. Whether amendments were applied or not, adding Zn 400 mg/kg to soil spiked with Cu 75 or 150 mg/kg may stimulate brown rice to uptake Cu. Application of Cu 75 or 150 mg/kg to soil spiked with Zn 200 or 400 mg/kg doesn’t stimulate brown rice to uptake Zn. Therefore, the effect of Zn addition on brown rice to uptake Cu is stronger than Cu addition on brown rice to uptake Zn.
In NA treatment, the weight of Bok Coy was affected by Cu-Zn interaction, and its weight was decreased after using combined Cu and Zn treatment. After applying lime or compost, Zn addition or Cu addition had no effect on Bok Coy’s weight. In NA treatment, adding Zn 200 mg/kg or 400 mg/kg to soil spiked with Cu 75 mg/kg or 150 mg/kg inhibited Bok Coy to uptake Cu, while the situation didn’t occur after applying lime or compost. With or without applying lime or compost, adding Cu 75 mg/kg or 150 mg/kg to soil spiked with Zn 0 mg/kg, Zn 200 mg/kg or Zn 400 mg/kg didn’t stimulate Bok Coy to uptake Zn. To sum up, Zn addition can inhibit Bok Coy to uptake Cu; Cu addition can’t affect Bok Coy to uptake Zn.
In general, whether amendments were applied or not, 0.05 M EDTA and 0.005 M DTPA extractable Zn concentration wasn’t stimulated or inhibited by Cu addition, and vice versa. In NA treatment, Zn addition stimulates 0.01 M CaCl2 extractable Cu concentration, and vice versa. After applying lime and compost, Zn addition or Cu addition doesn’t stimulate 0.01 M CaCl2 extractable Cu and Zn concentration.
Whether amendments were applied or not, 0.05 M EDTA, 0.005 M DTPA and 0.01 M CaCl2 extractable Cu concentration can be used to predict Cu concentration of brown rice and Bok Coy. In NA treatment, 0.05 M EDTA, 0.005 M DTPA and 0.01 M CaCl2 extractable Zn concentration can be used to predict Zn concentration of Brown rice.
Whether amendments were applied or not, 0.05 M EDTA, 0.005 M DTPA and 0.01 M CaCl2 extractable Cu concentration can be used to predict Cu concentration of brown rice and Bok Coy. In NA treatment, 0.05 M EDTA, 0.005 M DTPA and 0.01 M CaCl2 extractable Zn concentration can be used to predict Zn concentration of Brown rice. Whether amendments were applied or not, 0.05 M EDTA, 0.005 M DTPA and 0.01 M CaCl2 extractable Zn concentration can be used to predict Zn concentration of Bok Coy.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:20:05Z (GMT). No. of bitstreams: 1
ntu-102-R99623012-1.pdf: 2244398 bytes, checksum: 8767405e2352a1d918505cd14932fb87 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝......................................................II
中文摘要..................................................III
Abstract...................................................V
目錄.....................................................VII
表目錄......................................................X
圖目錄.....................................................XI
第一章 前言.................................................1
第二章 前人研究..............................................3
第一節、 銅和鋅..............................................3
第二節、 銅鋅汙染來源及現況....................................3
第三節、 整治銅鋅汙染土壤之方法.................................4
一、生物整治方法..............................................5
二、物理整治方法..............................................8
三、化學整治方法..............................................8
第四節、銅和鋅的相互作用......................................10
一、植體...................................................10
二、土壤...................................................11
第五節、水稻................................................12
第六節、單一萃取法...........................................14
第三章 材料與方法............................................16
第一節、試驗土壤.............................................16
第二節、試驗土壤基本理化性質分析................................16
一、土壤水分含量:重量法......................................16
二、pH值:電極測量法.........................................16
三、土壤質地:吸管法.........................................16
四、土壤有機碳含量:Walkley-Black 溼式氧化法...................17
五、石灰需要量:SMP 方法.....................................17
六、土壤全量銅和鋅:王水消化法.................................18
第三節、試驗堆肥基本性質分析...................................18
一、電導度.................................................18
第四節、盆栽處理.............................................18
一、單一或混合添加銅鋅濃度....................................18
二、施用改良劑(NA、Compost、Lime)...........................19
第五節、盆栽試驗.............................................20
一、水稻...................................................20
二、青梗白菜................................................20
三、植體前處理..............................................21
四、植體分解:HNO3-HClO4....................................21
五、土壤生物可萃取銅鋅濃度測定.................................21
第六節、統計分析.............................................22
第四章 結果與討論...........................................23
第一節、供試土壤基本理化性質...................................23
第二節、試驗用堆肥性質........................................23
第三節、不同處理下水稻之生長情形................................26
第四節、銅鋅相互作用對水稻生長之影響............................28
第五節、不同處理對水稻中銅濃度的影響............................31
一、糙米...................................................31
二、水稻地上部..............................................33
三、稻根...................................................33
第六節、銅鋅相互作用對水稻中銅濃度之影響.........................36
一、糙米...................................................36
二、水稻地上部..............................................40
三、稻根...................................................44
四、總結...................................................47
第七節、不同處理對水稻中鋅濃度的影響............................47
一、糙米...................................................47
二、水稻地上部..............................................49
三、稻根...................................................49
第八節、銅鋅相互作用對水稻中鋅濃度之影響.........................52
一、糙米...................................................52
二、水稻地上部..............................................55
三、稻根...................................................59
四、總結...................................................62
第九節、不同處理下青梗白菜生長情形..............................63
第十節、銅鋅相互作用對青梗白菜乾重之影響.........................63
第十一節、不同處理下青梗白菜中銅的濃度...........................67
第十二節、銅鋅相互作用對青梗白菜中銅的影響.......................70
一、添加銅濃度 0 mg/kg......................................70
二、添加銅濃度 75 mg/kg.....................................73
三、添加銅濃度 150 mg/kg....................................73
第十三節、不同處理下青梗白菜中鋅的濃度...........................74
第十四節、銅鋅相互作用對青梗白菜中鋅的影響.......................76
一、添加鋅濃度 0 mg/kg......................................76
二、添加鋅濃度 200 mg/kg....................................76
三、添加鋅濃度 400 mg/kg....................................76
第十五節、不同處理下土壤中可萃取銅和鋅濃度.......................79
一、0.05 M EDTA 可萃取銅和鋅.................................79
二、0.005 M DTPA 可萃取銅和鋅................................79
三、0.01 M CaCl2 可萃取銅和鋅................................83
四、總結...................................................83
第十六節、土壤可萃取銅和鋅之相互作用............................85
一、銅.....................................................85
二、鋅.....................................................93
第十七節、土壤中可萃取銅濃度與作物中銅濃度的關係..................101
第十八節、土壤中可萃取鋅濃度與作物中鋅濃度的關係..................109
第五章 結論...............................................116
參考文獻..................................................118
附錄.....................................................127
dc.language.isozh-TW
dc.title施用石灰與堆肥對水稻及青梗白菜中銅和鋅相互作用之影響zh_TW
dc.titleThe Effect of Applying Lime and Compost on Copper and Zinc Interaction of Rice and Bok Coyen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁炫(Jen-Hshuan Chen),黃裕銘(Yuh-Ming Huang),賴鴻裕(Hung-Yu Lai)
dc.subject.keyword銅,鋅,相互作用,水稻,青梗白菜,可萃取銅和鋅,化學固定法,zh_TW
dc.subject.keywordcopper,zinc,interaction,rice,Bok Coy,extractable copper and zinc,chemical stabilization,en
dc.relation.page142
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf2.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved