Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60515
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡偉博
dc.contributor.authorChun-Chieh Linen
dc.contributor.author林雋杰zh_TW
dc.date.accessioned2021-06-16T10:20:18Z-
dc.date.available2018-08-26
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation[1] Lysaght MJ, Hazlehurst AL. Tissue engineering: The end of the beginning. Tissue Engineering. 2004;10:309-20.
[2] Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7:211-24.
[3] Hashin Z SS. A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 1963:127-40.
[4] Burg KJ PS, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347-59.
[5] RZ L. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002:81-98.
[6] Drury JL MD. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337-51.
[7] Chi H.Lee ASaYL. Biomedical application of collagen. Int J Pharm. 2001;221:1-22.
[8] Bruce Alberts AJ, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Molecular biology of the cell 4th ed. 2002;New York:Garland Science.
[9] Muzzarelli RAA. Natural Chelating Polymer. Pergamon Press. 1973;Oxford, UK:83.
[10] Valerie Dodane VDV. Pharmaceutical applications of chitosan. Pharm Sci Technol Today. 1998;1:246-53.
[11] Zikakis J. Chitin, Chitosan and Related Enzymes. Academic Press, Orlando. 1984:17.
[12] Ishaug-Riley SL CG, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res. 1997;36:1-8.
[13] Martin I PR, Vunjak-Novakovic G, Freed LE. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J Orthop Res. 1998;16:181-9.
[14] Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, et al. PROGRESSIVE DEVELOPMENT OF THE RAT OSTEOBLAST PHENOTYPE INVITRO - RECIPROCAL RELATIONSHIPS IN EXPRESSION OF GENES ASSOCIATED WITH OSTEOBLAST PROLIFERATION AND DIFFERENTIATION DURING FORMATION OF THE BONE EXTRACELLULAR-MATRIX. Journal of Cellular Physiology. 1990;143:420-30.
[15] McCabe LR BC, Kundu R, Harrison RJ, Dobner PR, Stein JL, Lian JB, Stein GS. Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology. 1996;137:4398-408.
[16] Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials. 2005;26:137-46.
[17] Rapuano BE, Wu C, MacDonald DE. Osteoblast-like cell adhesion to bone sialoprotein peptides. J Orthop Res. 2004;22:353-61.
[18] Staatz WD, Fok KF, Zutter MM, Adams SP, Rodriguez BA, Santoro SA. Identification of a tetrapeptide recognition sequence for the alpha 2 beta 1 integrin in collagen. J Biol Chem. 1991;266:7363-7.
[19] Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697-715.
[20] Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23:4315-23.
[21] Jin Yoon J, Ho Song S, Sung Lee D, Park TGTG. Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials. 2004;25:5613-20.
[22] Arpornmaeklong P, Suwatwirote N, Pripatnanont P, Oungbho K. Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. International Journal of Oral and Maxillofacial Surgery. 2007;36:328-37.
[23] Vachiraroj N, Ratanavaraporn J, Damrongsakkul S, Pichyangkura R, Banaprasert T, Kanokpanont S. A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes. International Journal of Biological Macromolecules. 2009;45:470-7.
[24] Kim H-W, Kim H-E, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26:5221-30.
[25] Hwang DS, Waite JH, Tirrell M. Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid - recombinant mussel adhesive protein coatings on titanium. Biomaterials.31:1080-4.
[26] Chua P-H, Neoh K-G, Kang E-T, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29:1412-21.
[27] Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, et al. Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials. 2005;26:3197-206.
[28] Kumar MNVR. A review of chitin and chitosan applications. Reactive and Functional Polymers. 2000;46:1-27.
[29] VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res. 2002;59:585-90.
[30] Hsu S-h, Whu S, Tsai C-L, Wu Y-H, Chen H-W, Hsieh K-H. Chitosan as Scaffold Materials: Effects of Molecular Weight and Degree of Deacetylation. Journal of Polymer Research. 2004;11:141-7.
[31] Dornish M, Kaplan D, Skaugrud O. Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides. American Society for Testing and Materials. Ann N Y Acad Sci. 2001;944:388-97.
[32] SV Madihally HM. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999:1133-42.
[33] Kim IY SS, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26:1-21.
[34] Zhu JM. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639-56.
[35] Lee JH, Lee HB, Andrade JD. BLOOD COMPATIBILITY OF POLYETHYLENE OXIDE SURFACES. Progress in Polymer Science. 1995;20:1043-79.
[36] Lutolf MP. Spotlight on hydrogels. Nat Mater. 2009;8:451-3.
[37] Cushing MC, Anseth KS. Hydrogel cell cultures. Science. 2007;316:1133-4.
[38] Pascal TA, He Y, Jiang SY, Goddard WA. Thermodynamics of Water Stabilization of Carboxybetaine Hydrogels from Molecular Dynamics Simulations. J Phys Chem Lett. 2011;2:1757-60.
[39] Carr LR, Xue H, Jiang SY. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials. 2011;32:961-8.
[40] Jiang SY, Cao ZQ. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv Mater. 2010;22:920-32.
[41] Hoffman AS. Hydrogels for biomedical applications. Advanced drug delivery reviews. 2002;54:3-12.
[42] Ito Y, Chen GP, Guan YQ, Imanishi Y. Patterned immobilization of thermoresponsive polymer. Langmuir. 1997;13:2756-9.
[43] Liu HC, Ito Y. Cell attachment and detachment on micropattern-immobilized poly(N-isopropylacrylamide) with gelatin. Lab Chip. 2002;2:175-8.
[44] Das M, Fox CF. CHEMICAL CROSS-LINKING IN BIOLOGY. Annu Rev Biophys Bioeng. 1979;8:165-93.
[45] Kuo WH, Wang MJ, Chien HW, Wei TC, Lee C, Tsai WB. Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation. Biomacromolecules. 2011;12:4348-56.
[46] Tsai WB, Chen YR, Liu HL, Lai JY. Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering. Carbohydrate Polymers. 2011;85:129-37.
[47] Hermanson GT. Bioconjugate techniques: Academic Press, Inc., 1250 Sixth Ave., San Diego, California 92101, USA 14 Belgrave Square, 24-28 Oval Road, London NW1 70X, England, UK; 1996.
[48] Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews. 2012;64:223-36.
[49] Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D. Photopolymerization of cell-encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity. Acta Biomaterialia. 2012;8:1838-48.
[50] Gotoh T, Nakatani Y, Sakohara S. Novel synthesis of thermosensitive porous hydrogels. Journal of Applied Polymer Science. 1998;69:895-906.
[51] Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004;32:148-59.
[52] M. D. M. Innocentini RKF, R. Pisani Jr., I. Thijs, J. Luyten, S. Mullens. Permeability of porous gelcast scaffolds for bone tissue engineering. J porous Mater. 2009:1380-2224.
[53] Wang PY, Chow HH, Lai JY, Liu HL, Tsai WB. Dynamic compression modulates chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin scaffolds. J Biomed Mater Res B Appl Biomater. 2009;91:143-52.
[54] Maeno S NY, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847-55.
[55] Manjubala I PI, Wilke I, Jandt KD. Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds. J Biomed Mater Res B Appl Biomater. 2008;84:7-16.
[56] Tsai WB, Chen YR, Li WT, Lai JY, Liu HL. RGD-conjugated UV-crosslinked chitosan scaffolds inoculated with mesenchymal stem cells for bone tissue engineering. Carbohydrate Polymers. 2012;89:379-87.
[57] Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials. 2005;26:7616-27.
[58] Ho M-H, Kuo P-Y, Hsieh H-J, Hsien T-Y, Hou L-T, Lai J-Y, et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25:129-38.
[59] Ifkovits JL, Burdick JA. Review: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Engineering. 2007;13:2369-85.
[60] Mark H. MOLECULAR STRUCTURE AND MECHANICAL PROPERTIES OF HIGH POLYMERS - A REVIEW. Am J Phys. 1945;13:207-14.
[61] Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413-31.
[62] Duan SF, Zhu W, Yu L, Ding JD. Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel. Chin Sci Bull. 2005;50:1093-6.
[63] Chien HW, Xu XW, Ella-Menye JR, Tsai WB, Jiang SY. High Viability of Cells Encapsulated in Degradable Poly(carboxybetaine) Hydrogels. Langmuir. 2012;28:17778-84.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60515-
dc.description.abstract幾丁聚醣 (chitosan),是將幾丁質去乙醯化的衍生物,它具有好的生物相容性和降解性在組織工程的應用上,常被用來製作支架。本研究的目的在於試圖添加聚乙二醇及羧酸甜菜鹼進入幾丁聚醣支架中,期待它們能改善支架的物理性質,藉由支架上骨母細胞的培養,觀察加入聚乙二醇及羧酸甜菜鹼的支架是否會隊谷母細胞的生長及分化造成影響。
從結果中我們發現,含有聚乙二醇的支架具有更大的孔洞,較差的機械性質及更高的含水量。在細胞實驗中,我們發現含有聚乙二醇的支架對骨母細胞的生長效果有顯著的提升,但是對骨母細胞的分化上無明顯的助益。
在第二部分的實驗中我們發現,在支架中參入羧酸甜菜鹼,會讓支架具有較高的交聯程度,較強的機械性質,及較低的含水量。在細胞實驗中,我們發現加入羧酸甜菜鹼的支架相較於純幾丁聚醣支架,在骨母細胞生長上也有所提升,此外,在骨母細胞的分化上,加入羧酸甜菜鹼的支架明顯優於含有聚乙二醇的支架,因為對分化來講,它具有較好的細胞型態以及不錯的細胞生長。
從此實驗中得知,加入親水性分子像是聚乙二醇及羧酸甜菜鹼進入幾丁聚醣支架中,會增進骨母細胞的生長,但是對骨母細胞的分化並無直接的影響。
zh_TW
dc.description.abstractChitosan, the deacetylated derivative of chitin. Because chitosan is biocompatible and biodegradable, so it is a promising scaffold material for tissue engineering applications. In this study, we tried to add poly(ethylene glycol) (PEG) and carboxybetaine (CBMA) to scaffolds and expected they would improve the physical property of chitosan scaffolds. Then we cultured osteoblasts on scaffold to observe the influence of chitosan scaffolds incorporated with poly(ethylene glycol) or carboxybetaine on the proliferation and differentiation of osteoblasts.
As result, we found scaffolds containing PEG exhibited bigger pore size, weaker mechanical properties and higher water content of scaffolds. In cell culture experiment, we observed that the cell proliferation of osteoblasts on CHI/PEG scaffolds were better than the cell proliferation of osteoblasts on pure chitosan scaffolds. However, addition of PEG to scaffolds had no benefit on differentiation of osteoblasts.
In second part of study, by characteristic analysis, we found scaffolds containing CBMA exhibited degree of crosslinking, stronger mechanical properties and lower water content of scaffolds. In cell culture experiment, we observed that the cell proliferation of osteoblasts on CHI/CBMA scaffolds were better than the cell proliferation of osteoblasts on pure chitosan scaffolds. In addition, differentiation of osteoblasts of CHI/CBMA scaffolds was much better than that of pure chitosan scaffolds, because of good cell proliferation and cell form.
The research presents that adding hydrophilic molecule such as poly(ethylene glycol) (PEG) and carboxybetaine (CBMA) to scaffolds improved the cell proliferation of osteoblasts, however, had no directly influence on differentiation of osteoblast.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:20:18Z (GMT). No. of bitstreams: 1
ntu-102-R00524073-1.pdf: 1587171 bytes, checksum: 3cd3a9792d04401493a40afcd8fd3943 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAbstract ii
List of Tables viii
List of Figures ix
Chapter 1 1
Introduction 1
1.1 Tissue Engineering 1
1.1.1 Overview of Tissue Engineering 1
1.1.2 Scaffolding in Tissue Engineering 3
1.1.3 Cell culture in the scaffold 5
1.1.4 Application of bone engineering 7
1.2 Osteoblasts 8
1.3 Proliferation and differentiation of osteoblasts 10
1.4 Chitosan 12
1.5 Poly (ethylene glycol), PEG 13
1.6 Carboxybetaine, CBMA 14
1.7 Chitosan scaffold fabrication techniques 14
1.7.1 Freeze drying and crosslinking by azide chemistry 14
1.7.2 Free radical polymerization crosslinking method 16
1.8 Motive and aim 17
1.9 Research frame work 17
Chapter 2 18
Materials and Methods 18
2.1 Materials 18
2.1.1 Chitosan and poly(ethylene glycol) scaffold 18
2.1.2 Chitosan and carboxybetaine scaffold 18
2.1.3 Cell culture 19
2.1.4 Lactate dehydrogenase (LDH) assay 20
2.1.5 Alkaline phosphatase (ALP) activity 20
2.1.6 Mineralization 21
2.1.7 Equipments and experimental materials 21
2.1.8 Solution formula 22
2.2 Methods 24
2.2.1 Preparation of chitosan conjugated with photoreactive groups or peptides 24
2.2.2 Synthesis of chitosan conjugated with methacrylate (CHI-ene) 26
2.2.3 Preparation of chitosan and poly(ethylene glycol) scaffold 26
2.2.4 Preparation of chitosan and carboxybetaine scaffold 27
2.2.5 Characterization of chitosan and poly(ethylene glycol) scaffolds 28
2.2.6 Characterization of chitosan and carboxybetaine scaffolds 30
2.2.7 Cell cultured on chitosan/PEG and chitosan/CBMA scaffolds 31
2.2.8 Cell proliferation (LDH) 32
2.2.9 Alkaline phosphatase (ALP) activity 33
2.2.10 Calcium quantification 33
2.2.11 Mineralization culture of osteoblasts/scaffold constructs 34
2.2.12 Statistic analysis 34
Chapter 3 35
Characterization and cell affinity analysis of chitosan and poly(ethylene glycol) scaffold 35
3.1 Characterization of chitosan and poly(ethylene glycol) scaffolds 35
3.1.1 Effects of poly(ethylene glycol) concentration on pore structure 35
3.1.2 Effects of poly(ethylene glycol)concentration on mechanical properties 36
3.1.3 Effects of poly(ethylene glycol) concentration on water content 37
3.2 Culture of osteoblasts in chitosan and poly(ethylene glycol) scaffolds 37
3.3 Mineralization culture of chitosan and poly(ethylene glycol) scaffolds 39
3.4 Discussion 40
Chapter 4 54
Characterization and cell affinity analysis of chitosan and carboxybetaine scaffold 54
4.1 1H NMR of chitosan and CHI-ene 54
4.2 Characterization of chitosan and carboxybetaine scaffolds 55
4.1.1 Effects of carboxybetaine concentration on mechanical properties 55
4.1.2 Effects of carboxybetaine concentration on water content 56
4.3 Culture of osteoblasts in chitosan and carboxybetaine scaffolds 56
4.4 Mineralization culture of chitosan and carboxybetaine scaffolds 58
4.5 Discussion 59
Chapter 5 71
Conclusion 71
Chapter 6 73
Future Works 73
Reference 74
Appendix 79
 
dc.language.isoen
dc.subject骨組織工程zh_TW
dc.subject聚乙二醇zh_TW
dc.subject幾丁聚醣支架zh_TW
dc.subject羧酸甜菜鹼zh_TW
dc.subject骨母細胞zh_TW
dc.subjectchitosan scaffolden
dc.subjectPEGen
dc.subjectCBMAen
dc.subjectosteoblastsen
dc.subjectbone tissue engineeringen
dc.title幾丁聚醣支架添加聚乙二醇或羧酸甜菜鹼對於骨母細胞生長及分化的影響zh_TW
dc.titleThe influence of chitosan scaffolds incorporated with poly(ethylene glycol) or carboxybetaine on the proliferation and differentiation of osteoblastsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王孟菊,游佳欣
dc.subject.keyword幾丁聚醣支架,聚乙二醇,羧酸甜菜鹼,骨母細胞,骨組織工程,zh_TW
dc.subject.keywordchitosan scaffold,PEG,CBMA,osteoblasts,bone tissue engineering,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
1.55 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved