請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60491
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇南維(Nan-Wei Su) | |
dc.contributor.author | Chia-chen Hsu | en |
dc.contributor.author | 徐葭蓁 | zh_TW |
dc.date.accessioned | 2021-06-16T10:19:37Z | - |
dc.date.available | 2016-08-26 | |
dc.date.copyright | 2013-08-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-16 | |
dc.identifier.citation | 林宜璇 (2008)。大豆之isoflavone conjugates及其相關水解酵素之研究。臺灣大學農業化學系碩士論文。
常致綱 (2006)。大豆異黃酮定量方法之改良及加工方式對大豆異黃酮種類轉換之研究。臺灣大學農業化學系碩士論文。 莊榮輝 (2005)。酵素化學實驗。臺灣大學微生物與生化所生物化學研究室。 蔡文福 (1994)。雜糧作物各論。臺北市:臺灣糧食發展基金會。 Albertazzi P (2002) Purified phytoestrogens in postmenopausal bone health: is there a role for genistein? Climacteric : The Journal of the International Menopause Society 5: 190-196 Andres S, Abraham K, Appel KE, Lampen A (2011) Risks and benefits of dietary isoflavones for cancer. Critical Reviews in Toxicology 41: 463-506 Anthony MS, Clarkson TB, Hughes CL, Jr., Morgan TM, Burke GL (1996) Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. The Journal of Nutrition 126: 43-50 Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201 Barnes S (2010) The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphatic Research and Biology 8: 89-98 Barz W. WR (1992) Biosynthesis and metabolism of isoflavones and pterocarpan phytoalexins in chickpea, soybean and phytopathogenic fungi. Recent Advances in Phytochemistry 26: 139-164 Beck AB (1964) The oestrogenic isoflavones of subterranean clover. Australian Journal of Agricultural Research 15: 223-230 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254 Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262: 1051-1054 Caetano-Anolles G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G (1988) Role of motility and chemotaxis in efficiency of nodulation by rhizobium meliloti. Plant Physiology 86: 1228-1235 Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research Suppl: Res 37:D233–D238 Cederroth CR, Nef S (2009) Soy, phytoestrogens and metabolism: A review. Molecular and Cellular Endocrinology 304: 30-42 Cena ER, Steinberg FM (2011) Soy may help protect against cardiovascular disease. California Agriculture 65: 118-123 Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil 329: 1-25 Chen H, Seguin P, Jabaji S, Liu W (2011) Spatial distribution of isoflavones and isoflavone-related gene expression in high- and low-isoflavone soybean cultivars. Canadian Journal of Plant Science 91: 697-705 Chen KI, Lo YC, Su NW, Chou CC, Cheng KC (2012) Enrichment of two isoflavone aglycones in black soymilk by immobilized beta-glucosidase on solid carriers. Journal of Agricultural and Food Chemistry 60: 12540-12546 Chiou TY, Lin YH, Su NW, Lee MH (2010) Beta-glucosidase isolated from soybean okara shows specificity toward glucosyl isoflavones. Journal of Agricultural and Food Chemistry 58: 8872-8878 Chuankhayan P, Hua Y, Svasti J, Sakdarat S, Sullivan PA, Ketudat Cairns JR (2005) Purification of an isoflavonoid 7-O-beta-apiosyl-glucoside beta-glycosidase and its substrates from Dalbergia nigrescens Kurz. Phytochemistry 66: 1880-1889 Chuankhayan P, Rimlumduan T, Tantanuch W, Mothong N, Kongsaeree PT, Metheenukul P, Svasti J, Jensen ON, Cairns JRK (2007) Functional and structural differences between isoflavonoid beta-glycosidases from Dalbergia sp. Archives of Biochemistry and Biophysics 468: 205-216 Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. Journal of Applied Microbiology 103: 1355-1365 Demmig-Adams B, McCauley L (2005) Breast cancer, estrogen, soy genistein, and other dietary factors: Towards an understanding of their mechanistic interactions. Nutrition & Food Science 35: 35-42 Dhaubhadel S, McGarvey BD, Williams R, Gijzen M (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Molecular Biology 53: 733-743 Graham TL (1991) Flavonoid and isoflavonoid distribution on developing soybean, seedling tissues and in seed and root exudates. Plant Physiology 95: 594-603 Hakamatsuka T, Mori K, Ishida S, Ebizuka Y, Sankawa U (1998) Purification of 2-hydroxyisoflavanone dehydratase from the cell cultures of Pueraria lobata. Phytochemistry 49: 497-505 Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal 293 ( Pt 3): 781-788 Hinderer W (1986) Purification and properties of a specific isoflavone 7-O-glucoside-6'-malonate malonylesterase from roots of chickpea. Archives of Biochemistry and Biophysics 248: 570-578 Holzapfela WH, Haberera P, Snelb J, Schillingera U, Huis JHJ (1998) Overview of gut flora and probiotics. International Journal of Food Microbiology 41: 85-101 Hosel W, Barz W (1975) Beta-Glucosidases from Cicer arietinum L. Purification and Properties of isoflavone-7-O-glucoside-specific beta-glucosidases. European Journal of Biochemistry 57: 607-616 Hsieh MC, Graham TL (2001) Partial purification and characterization of a soybean beta-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry 58: 995-1005 Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM (2009) Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutrition and Cancer 61: 598-606 Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. Journal of Nutrition 130: 1695-1699 Kasturi L, Chen H, Shakin-Eshleman SH (1997) Regulation of N-linked core glycosylation: use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. The Biochemical journal 323 ( Pt 2): 415-419 Kawamura S (1967) Quantitative paper chromatography of sugars of the cotyledon, hull, and hypocotyl of soybeans of selected varieties. Tech. Bull. Fac. Agric. Kagawa Univ 18: 117-131 Ketudat Cairns JR, Champattanachai V, Srisomsap C, Wittman-Liebold B, Thiede B, Svasti J (2000) Sequence and expression of Thai Rosewood beta-glucosidase/beta-fucosidase, a family 1 glycosyl hydrolase glycoprotein. Journal of Biochemistry 128: 999-1008 Ketudat Cairns JR, Esen A (2010) beta-Glucosidases. Cellular and Molecular Life Sciences : CMLS 67: 3389-3405 Klejdus B, Mikelova R, Petrlova J, Potesil D, Adam V, Stiborova M, Hodek P, Vacek J, Kizek R, Kuban V (2005) Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. Journal of Agricultural and Food Chemistry 53: 5848-5852 Klump SP, Allred MC, MacDonald JL, Ballam JM (2001) Determination of isoflavones in soy and selected foods containing soy by extraction, saponification, and liquid chromatography: collaborative study. Journal of AOAC International 84: 1865-1883 Koester J, Bussmann R, Barz W (1984) Malonyl-coenzyme A:isoflavone 7-O-glucoside-6'-O-malonyltransferase from roots of chick pea (Cicer arietinum L.). Archives of Biochemistry and Biophysics 234: 513-521 Koster J, Barz W (1981) UDP-glucose:isoflavone 7-O-glucosyltransferase from roots of chick pea (Cicer arietinum L.). Archives of Biochemistry and Biophysics 212: 98-104 Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138: 863-870 Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT (2006) Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Applied Microbiology and Biotechnology 73: 314-320 Kuo YC, Tan CC, Ku JT, Hsu WC, Su SC, Lu CA, Huang LF (2013) Improving Pharmaceutical Protein Production in Oryza sativa. International Journal of Molecular Sciences 14: 8719-8739 Kurzer MS (2000) Hormonal effects of soy isoflavones: studies in premenopausal and postmenopausal women. The Journal of Nutrition 130: 660S-661S Lameta AD, Jay M (1987) Study of soybean and lentil root exudates .3. Influence of soybean isoflavonoids on the growth of rhizobia and some rhizospheric microorganisms. Plant and Soil 101: 267-272 Lampe JW, Karr SC, Hutchins AM, Slavin JL (1998) Urinary equol excretion with a soy challenge: influence of habitual diet. Proceedings of The Society for Experimental Biology and Medicine 217: 335-339 Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed beta-glucosidase. The Journal of Biological Chemistry 270: 15789-15797 Lin CH, Wei YT, Chou CC (2006) Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiology 23: 628-633 Matsuura M, Oakes M (1993) β-Glucosidases from soybeans hydrolyze daidzin and genistin. Journal of Food Science 58: 144-147 Matsuura M, Sasaki J, Murao S (1995) Studies on beta-glucosidases from soybeans that hydrolyze daidzin and genistin - isolation and characterization of an isozyme. Bioscience, Biotechnology, and Biochemistry 59: 1623-1627 Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR, Duthie GG (1998) Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Archives of Biochemistry and Biophysics 360: 142-148 Morant AV, Jorgensen K, Jorgensen C, Paquette SM, Sanchez-Perez R, Moller BL, Bak S (2008) Beta-glucosidases as detonators of plant chemical defense. Phytochemistry 69: 1795-1813 Morton MS, Arisaka O, Miyake N, Morgan LD, Evans BA (2002) Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. The Journal of Nutrition 132: 3168-3171 Motoyama T, Maruyama N, Amari Y, Kobayashi K, Washida H, Higasa T, Takaiwa F, Utsumi S (2009) α' Subunit of soybean β-conglycinin forms complex with rice glutelin via a disulphide bond in transgenic rice seeds. Journal of Experimental Botany 60: 4015-4027 Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T (2007) A UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings. Purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. The Journal of Biological Chemistry 282: 23581-23590 Okabe Y, Shimazu T, Tanimoto H (2011) Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. Journal of the Science of Food and Agriculture 91: 658-663 Piskula MK, Yamakoshi J, Iwai Y (1999) Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS letters 447: 287-291 Ribeiro MLL, Mandarino JMG, Carrao-Panizzi MC, de Oliveira MCN, Campo CBH, Nepomuceno AL, Ida EI (2007) Isoflavone content and beta-glucosidase activity in soybean cultivars of different maturity groups. Journal of Food Composition and Analysis 20: 19-24 Romani A, Vignolini P, Galardi C, Aroldi C, Vazzana C, Heimler D (2003) Polyphenolic content in different plant parts of soy cultivars grown under natural conditions. Journal of Agricultural and Food Chemistry 51: 5301-5306 Ronis MJ, Little JM, Barone GW, Chen G, Radominska-Pandya A, Badger TM (2006) Sulfation of the isoflavones genistein and daidzein in human and rat liver and gastrointestinal tract. Journal of Medicinal Food 9: 348-355 Santos RF, Oliveria CF, Varea GS, Orradi DA, Silva MLC, Ida EI, Mandarino VMG, Carrao-panizzi MC, Ribeiro MLL (2012) Purification and characterization of soy cotyledon β-glucosidase. Journal of Food Biochemistry 37: 302-312 Seshadri S, Akiyama T, Opassiri R, Kuaprasert B, Cairns JK (2009) Structural and enzymatic characterization of Os3BGlu6, a rice beta-glucosidase hydrolyzing hydrophobic glycosides and (1->3)- and (1->2)-linked disaccharides. Plant Physiology 151: 47-58 Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. The Journal of Nutrition 129: 758S-767S Setchell KDR, Brown NM, Desai PB, Zimmer-Nechimias L, Wolfe B, Jakate AS, Creutzinger V, Heubi JE (2003) Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. Journal of Nutrition 133: 1027-1035 Setchell KDR, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. The American Journal of Clinical Nutrition 76: 447-453 Sfakianos J, Coward L, Kirk M, Barnes S (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. The Journal of Nutrition 127: 1260-1268 Suzuki H (2007) cDNA cloning of a BAHD acyltransferase from soybean (Glycine max): Isoflavone 7-O-glucoside-6'-O-malonyltransferase. Phytochemistry 68: 2035-2042 Suzuki H, Takahashi S, Watanabe R, Fukushima Y, Fujita N, Noguchi A, Yokoyama R, Nishitani K, Nishino T, Nakayama T (2006) An isoflavone conjugate-hydrolyzing beta-glucosidase from the roots of soybean (Glycine max) seedlings: purification, gene cloning, phylogenetics, and cellular localization. The Journal of Biological Chemistry 281: 30251-30259 Svastia J, Srisomsapa C, Techasakula S, Surarit R (1999) Dalcochinin-8'-O-β-D- glucoside and its β-glucosidase enzyme from Dalbergia cochinchinensis. Phytochemistry 50: 739-743 Uzzan M, Labuza TP (2004) Critical issues in R&D of soy isoflavone-enriched foods and dietary supplements. Journal of Food Science 69: R77-R86 Varghese JN, Hrmova M, Fincher GB (1999) Three-dimensional structure of a barley beta-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 7: 179-190 Wang CS, Vodkin LO (1994) Extraction of RNA from tissues containing high levels of procyanidins that bind RNA. Plant Molecular Biology 12: 132-145 Wang HJ, Murphy PA (1994) Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry 42: 1666-1673 Wang HJ, Murphy PA (1996) Mass balance study of isoflavones during soybean processing. Journal of Agricultural and Food Chemistry 44: 2377-2383 Warzecha H, Gerasimenko I, Kutchan TM, Stockigt J (2000) Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry 54: 657-666 Werner D (2001) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri Z (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 197–222 Wu AH, Yu MC, Tseng CC, Pike MC (2008) Epidemiology of soy exposures and breast cancer risk. British Journal of Cancer 98: 9-14 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60491 | - |
dc.description.abstract | 大豆(Glycine max L.)是廣泛使用在食品及食品加工的原料,含有多種機能性成分,例如:具有雌激素活性的大豆異黃酮。大豆異黃酮有12種形式,在大豆中含量較高的為malonylglucosides以及glucosides兩種,但此兩種不易被人體吸收,若能經由malonylesterase以及β-glucosidase將此兩種異黃酮轉換為aglycones形式,則可提高大豆異黃酮之生體可用率(bioavailibility)。
在實驗室先前的研究中,從大豆渣分離出Glycine max β-glucosidase (GmBGL),經由蛋白質N端定序得到十個胺基酸序列。本研究第一部分利用此序列片段,從黃豆選殖GmBGL基因。結果顯示,GmBGL的ORF (open reading frame)由1884個鹼基組成,轉譯成627個胺基酸,分子量為69 kDa,等電點為8.98。利用農桿菌感染水稻(Oryza sativa L.),以ubiquitin啟動子驅動GmBGL在水稻大量表現。結果顯示,GmBGL之RNA及蛋白質在轉殖水稻中均有表現。轉殖水稻中的重組GmBGL可催化glucosides (genistin和daidzin) 水解為aglycones (genistein和daidzein),確認GmBGL是具有功能的β-glucosidase基因。與其它植物之β-glucosidase基因進行序列比對,GmBGL屬於第三族醣苷水解酵素,具有第三族醣苷水解酵素在功能區的保守性序列。分析GmBGL在大豆不同組織的表現,發現在根、莖、葉、果莢和成熟種子都有表現,其中又以根部和葉部最多。 第二部分的研究由大豆分離malonylesterase。將大豆加水打成豆漿後,以0.5%氯化鈣沉澱雜蛋白可以在上清液測得最高的esterase比活性。經過超過濾濃縮、硫酸銨沉澱,選取40-50%飽和度硫酸銨沉澱部分,再以陰離子交換管柱層析收集活性區,最後以活性染色分析得到esterase活性條帶。經過分離純化的步驟,malonylesterase活性回收率為0.208%,純化倍率為73倍。研究結果顯示,大豆具有對malonylglucosides有專一性水解能力的esterase。 | zh_TW |
dc.description.abstract | Soybean (Glycine max L.) is widely consumed in food and food processing. In soybean, it contains many bioactive components including isoflavones which have estrogenic effects. Soy isoflavones are known to occur in 12 conjugation forms. The predominant forms are malonylglucosides and glucosides, but aglycones were absorbed faster and in greater amounts than their glucosides in humans. Therefore, the bioavailability of isoflavones is able to be improved when malonylglucosides are hydrolyed by malonylesterase and β-glucosidase to produce aglycones.
In our previous work, a novel Glycine max β-glucosidase (GmBGL) was isolated from soybean okara and ten N-terminal amino acids were determined. In the first part of this thesis, GmBGL gene was cloned from soybean according to Phytozome blast search with this N-terminal partial sequence. The cDNA of GmBGL contained an ORF (open reading frame) of 1884 bp coding for 627 amino acids. Sequence analysis revealed that the gene encodes a 69 kDa enzyme, which has a theoretical isoelectric point at 8.98. The GmBGL was expressed in rice (Oryza sativa L.) under the control of the constitutive ubiquitin promoter by Agrobacterium-mediated transformation. The recombinant GmBGL expressed in rice catalyzed the hydrolysis of glucosides (genistin and daidzin) to produce aglycones (genistein and daidzein). This result confirmed that GmBGL was indeed a fuctional β-glucosidase gene. Based on the alignment analysis of the deduced amino acid sequence of GmBGL and other plant β-glucosidase, GmBGL was assigned to glycosyl hydrolases family 3 and contained the conserved motif which is thought to be the active site in family 3 members. Analysis of gene expression in various tissues of soybean showed that the GmBGL transcript was presented in stem, pod and mature seed and particularly highly accumulated in root and leaf. The second part of this thesis is to isolate the malonylesterase which is capable specificity to hydrolyze malonylglucosides into simple glucosides of isoflavone. Soybeans were soaked and then homogenized to prepare soybean milk. Isolation processes of the malonylesterase involved using calcium chloride to remove the intrinsic storage protein of soybean, ammonium sulfate fractionation, and DEAE anion exchange chromatography. The results indicated that the supernatant from 0.5% (w/v) calcium chloride showed a superior esterase activity. 40-50% saturation interval of ammonium sulfate precipitation possessed the most specific activity of malonylesterase. After further fractionation by DEAE anion exchange chromatography, an active esterase band was detected through Native PAGE and zymographic analysis and moreover, the corresponding protein also showed high specificity to malonylglucosides. In this purification process, the activity recovery of malonylesterase was 0.208% with a 73-fold purification efficiency. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:19:37Z (GMT). No. of bitstreams: 1 ntu-102-R00623010-1.pdf: 3994986 bytes, checksum: a683be8be47069dcb639ac1eb54e1f83 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝 ................................................................................................................................... i 中文摘要 .......................................................................................................................... ii Abstract ............................................................................................................................ iii 目錄 .................................................................................................................................. v 圖目錄 ............................................................................................................................. ix 表目錄 ............................................................................................................................. xi 附錄 ................................................................................................................................. xi 縮寫對照表 .................................................................................................................... xii 第一章 前言 .................................................................................................................... 1 第二章 文獻回顧 ............................................................................................................ 3 第一節 大豆異黃酮 ................................................................................................ 3 1.1 大豆簡介 ................................................................................................... 3 1.2 異黃酮之結構與生理活性 ....................................................................... 3 1.3 異黃酮在人體之吸收與代謝 ................................................................... 5 1.4 異黃酮之生體可用率 ............................................................................... 6 第二節 異黃酮在植物中的功能以及生合成途徑 .............................................. 13 2.1 異黃酮的功能 ......................................................................................... 13 2.2 異黃酮的生合成與轉換 ......................................................................... 13 第三節 Beta-葡萄糖苷酶 (β-glucosidase) ........................................................... 20 3.1 Beta-葡萄糖苷酶 ..................................................................................... 20 3.2 豆科植物β-glucosidase的研究 ............................................................. 20 第四節 加工方式造成異黃酮種類的轉換 .......................................................... 25 4.1 異黃酮之去醣基作用 ............................................................................. 25 4.2 熱處理加工對大豆異黃酮的影響 ......................................................... 25 第三章 材料與方法 ...................................................................................................... 28 第一節 大豆GmBGL基因選殖 ........................................................................... 28 1.1 大豆種子之RNA製備 ........................................................................... 28 1.2 合成第一股cDNA .................................................................................. 29 1.3 大豆GmBGL基因選殖 .......................................................................... 29 1.4 質粒的構築 ............................................................................................. 31 第二節 水稻基因轉殖 .......................................................................................... 33 2.1 水稻癒傷組織誘導 ................................................................................. 33 2.2 農桿菌轉型與培養 ................................................................................. 33 2.3 水稻的轉殖 ............................................................................................. 34 2.4 轉殖水稻的生長與分析材料準備 ......................................................... 34 第三節 轉殖水稻GmBGL基因表現分析 ........................................................... 35 3.1 水稻RNA萃取 ....................................................................................... 35 3.2 DNase處理RNA ..................................................................................... 35 3.3 半定量反轉錄聚合酶連鎖反應(semi-quantitative RT-PCR) ................ 35 第四節 轉殖水稻GmBGL蛋白質表現分析 ...................................................... 36 4.1 GmBGL抗體製備 ................................................................................... 36 4.2 蛋白質萃取 ............................................................................................. 37 4.3 西方墨點法 ............................................................................................. 38 第五節 轉殖水稻GmBGL酵素活性測定 .......................................................... 39 5.1 大豆異黃酮之精製純化 ......................................................................... 39 5.2 以p-NPG為基質進行酵素反應 ............................................................ 41 5.3 以大豆異黃酮為基質進行酵素反應 ..................................................... 42 第六節 GmBGL基因序列研究 ............................................................................ 42 6.1 序列比對與演化分析 ............................................................................. 42 6.2 蛋白質結構以及訊息胜肽預測 ............................................................. 43 第七節 大豆中GmBGL基因表現特性分析 ....................................................... 43 7.1 大豆材料 ................................................................................................. 43 7.2 半定量反轉錄聚合酶連鎖反應 (semi-quantitative RT-PCR) .............. 43 第八節 Malonyl esterase之分離純化 .................................................................. 44 8.1 大豆之前處理 ......................................................................................... 44 8.2 氯化鈣沉澱 ............................................................................................. 44 8.3 超過濾(Ultrafiltration)濃縮蛋白質 ........................................................ 45 8.4 硫酸銨沉澱 ............................................................................................. 45 8.5 陰離子交換樹脂層析 ............................................................................. 45 8.6 酵素活性測定 ......................................................................................... 46 8.7 Esterase活性染色分析(Zymography)..................................................... 46 第四章 結果與討論 ...................................................................................................... 48 第一部分 ................................................................................................................ 48 第一節 基因全長之選殖 ...................................................................................... 48 第二節 蛋白質結構預測 ...................................................................................... 53 第三節 轉殖水稻的基因表現分析 ...................................................................... 55 第四節 轉殖水稻的β-glucosidase酵素活性測定 .............................................. 59 第五節 序列比對與演化分析 .............................................................................. 65 第六節 GmBGL的組織專一性 ............................................................................ 71 第二部分 ................................................................................................................ 73 第七節 大豆之malonylesterase分離純化 .......................................................... 73 第五章 結論 .................................................................................................................. 82 參考文獻 ........................................................................................................................ 83 附錄 ................................................................................................................................ 93 | |
dc.language.iso | zh-TW | |
dc.title | 大豆中異黃酮水解酵素之研究:
一、含醣基大豆異黃酮之β-糖苷鍵水解酶之基因選殖及特性分析 二、含丙二醯葡萄糖苷異黃酮之酯解酶之分離與純化 | zh_TW |
dc.title | Studies on the Hydrolytic Enzymes of Isoflavone in Soybean:
Ⅰ: Molecular Cloning and Characterization of Glycine max β-Glucosidase that Serves to Deglucosylate Isoflavone Glucosides Ⅱ: Isolation and Purification of Isoflavone 7-O-Glucoside-6”- malonate Malonylesterase in Soybean | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李敏雄(Min-Hsiung Lee),洪傳揚(Chwan-Yan Hong),張孟基(Men-Chi Chang),許輔(Fuu Sheu) | |
dc.subject.keyword | 異黃酮,β-糖苷,鍵水解酶,第三族醣苷,水解酵素,酯解酶,轉殖水稻, | zh_TW |
dc.subject.keyword | Isoflavone,β-glucosidase,Glycosyl hydrolases family 3,Esterase,Transgenic rice, | en |
dc.relation.page | 99 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。