請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60489
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊健志(Chien-Chih Yang) | |
dc.contributor.author | Chia-Chun Lin | en |
dc.contributor.author | 林佳君 | zh_TW |
dc.date.accessioned | 2021-06-16T10:19:33Z | - |
dc.date.available | 2018-09-06 | |
dc.date.copyright | 2013-09-06 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-16 | |
dc.identifier.citation | Apel K, Hirt H (2004) REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology 55: 373-399
Asada K (1999) THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annual Review of Plant Physiology and Plant Molecular Biology 50: 601-639 Balestrasse KB, Tomaro ML, Batlle A, Noriega GO (2010) The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry 71: 2038-2045 Barajas-Lopez JdD, Kremnev D, Shaikhali J, Pinas-Fernandez A, Strand A (2013) PAPP5 Is Involved in the Tetrapyrrole Mediated Plastid Signalling during Chloroplast Development. PLoS ONE 8: e60305 Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynthesis Research 60: 43-73 Bradbeer JW, Atkinson YE, Borner T, Hagemann R (1979) Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid-synthesised RNA. Nature 279: 816-817 Brosche M, Overmyer K, Wrzaczek M, Kangasjarvi J, Kangasjarvi S (2010) Stress Signaling III: Reactive Oxygen Species (ROS). In: Pareek A, Sopory SK, Bohnert HJ (eds) Abiotic Stress Adaptation in Plants. Springer Netherlands, pp 91-102 Chi W, Sun X, Zhang L (2013) Intracellular Signaling from Plastid to Nucleus. Annual Review of Plant Biology 64: 559-582 Crane BR, Getzoff ED (1996) The relationship between structure and function for the sulfite reductases. Current Opinion in Structural Biology 6: 744-756 Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304: 253-257 Espinas NA, Kobayashi K, Takahashi S, Mochizuki N, Masuda T (2012) Evaluation of Unbound Free Heme in Plant Cells by Differential Acetone Extraction. Plant and Cell Physiology 53: 1344-1354 Feild TS, Lee DW, Holbrook NM (2001) Why Leaves Turn Red in Autumn. The Role of Anthocyanins in Senescing Leaves of Red-Osier Dogwood. Plant Physiology 127: 566-574 Foyer CH, Noctor G (2005) Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. The Plant Cell Online 17: 1866-1875 Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? Journal of Experimental Botany 55: 1445-1454 Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28: 1091-1101 Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH (2010) Identification and Testing of Superior Reference Genes for a Starting Pool of Transcript Normalization in Arabidopsis. Plant and Cell Physiology 51: 1694-1706 Inaba T, Schnell DJ (2008) Protein trafficking to plastids: one theme, many variations. Biochemical Journal 413: 15-28 Jacob S, Dietz K-J (2010) Systematic Analysis of Superoxide-Dependent Signaling in Plant Cells: Usefulness and Specificity of Methyl Viologen Application. Plant Stress Biology. Wiley-VCH Verlag GmbH & Co. KGaA, pp 179-196 Jahn D, Verkamp E, So‥ll D (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends in Biochemical Sciences 17: 215-218 Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO journal 6: 3901-3907 Johanningmeier U, Howell SH (1984) Regulation of light-harvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardi. Possible involvement of chlorophyll synthesis precursors. Journal of Biological Chemistry 259: 13541-13549 Kao A-L, Chang T-Y, Chang S-H, Su J-C, Yang C-C (2005) Characterization of a Novel Arabidopsis Protein Family AtMAPR Homologous to 25-Dx/IZAg/Hpr6.6 Proteins. Botanical Bulletin of Academia Sinica 46: 107-118 Kao A-L, Lin Y-H, Chen RPY, Huang Y-Y, Chen C-C, Yang C-C (2012) E3-independent ubiquitination of AtMAPR/MSBP1. Phytochemistry 78: 7-19 Khan AA, Quigley JG (2011) Control of intracellular heme levels: Heme transporters and heme oxygenases. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1813: 668-682 Kimura M, Yoshizumi T, Manabe K, Yamamoto YY, Matsui M (2001) Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways. Genes to Cells 6: 607-617 Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from Chloroplasts Converge to Regulate Nuclear Gene Expression. Science 316: 715-719 Lee H-J, Mochizuki N, Masuda T, Buckhout TJ (2012) Disrupting the bimolecular binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to oxidative stress in Arabidopsis. Journal of Experimental Botany 63: 5967-5978 Levican G, Katz A, de Armas M, Nunez H, Orellana O (2007) Regulation of a glutamyl-tRNA synthetase by the heme status. Proceedings of the National Academy of Sciences 104: 3135-3140 Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends in Plant Science 15: 488-498 Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proceedings of the National Academy of Sciences 105: 15178-15183 Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K (2003) Role of 5-amino levulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). Journal of Plant Physiology 160: 1085-1091 Nott A, Jung H-S, Koussevitzky S, Chory J (2006) Plastid-to-Nucleus Retrograde Signaling. Annual Review of Plant Biology 57: 739-759 Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kurkcuoglu S, Kreuzaler F (2010) Photorespiration. Arabidopsis Book 8: 23 Ramirez L, Bartoli CG, Lamattina L (2013) Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. Journal of Experimental Botany Raux-Deery E, Leech HK, Nakrieko K-A, McLean KJ, Munro AW, Heathcote P, Rigby SEJ, Smith AG, Warren MJ (2005) Identification and Characterization of the Terminal Enzyme of Siroheme Biosynthesis from Arabidopsis thaliana: A PLASTID-LOCATED SIROHYDROCHLORIN FERROCHELATASE CONTAINING A 2FE-2S CENTER. Journal of Biological Chemistry 280: 4713-4721 Reis T, Bergfeld R, Link G, Thien W, Mohr H (1983) Photooxidative destruction of chloroplasts and its consequences for cytosolic enzyme levels and plant development. Planta 159: 518-528 Richter A, Peter E, Pors Y, Lorenzen S, Grimm B, Czarnecki O (2010) Rapid Dark Repression of 5-Aminolevulinic Acid Synthesis in Green Barley Leaves. Plant and Cell Physiology 51: 670-681 Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity: Heme oxygenase has both pro- and antioxidant properties. Free Radical Biology and Medicine 28: 289-309 Sassa S (2004) Why heme needs to be degraded to iron, biliverdin IXα, and carbon monoxide? Antioxidants and Redox Signaling 6: 819-824 Severance S, Hamza I (2009) Trafficking of Heme and Porphyrins in Metazoa. Chemical Reviews 109: 4596-4616 Shao H, Chu L, Lu Z, Kang C (2007) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. International Journal of Biological Science 4: 8-14 Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57: 711-726 Smirnoff N (2000a) Ascorbate biosynthesis and function in photoprotection. Philosophical Transactions of the Royal Society B: Biological Sciences 355: 1455-1464 Smirnoff N (2000b) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology 3: 229-235 Song L, Shi Q-M, Yang X-H, Xu Z-H, Xue H-W (2009) Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Research 19: 864-876 Strakhovskaya M, Shumarina A, Fraikin G, Rubin A (1998) Synthesis of protoporphyrin IX induced by 5-aminolevulinic acid in yeast cells in the presence of 2,2;-dipyridyl. Biochemistry 63: 725-728 Strakhovskaya MG, Shumarina AO, Fraikin GY, Rubin AB (1999) Endogenous porphyrin accumulation and photosensitization in the yeast Saccharomyces cerevisiae in the presence of 2,2′-dipyridyl. Journal of Photochemistry and Photobiology B: Biology 49: 18-22 Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74: 787-799 Tanaka R, Tanaka A (2007) Tetrapyrrole Biosynthesis in Higher Plants. Annual Review of Plant Biology 58: 321-346 Taylor NL, Day DA, Millar AH (2002) Environmental Stress Causes Oxidative Damage to Plant Mitochondria Leading to Inhibition of Glycine Decarboxylase. Journal of Biological Chemistry 277: 42663-42668 Terry M, Linley P, Kohchi T (2002) Making light of it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochemical Society Transaction 30: 604-609 Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. The Plant Journal 11: 1187-1194 Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H (2011) The Arabidopsis Multistress Regulator TSPO Is a Heme Binding Membrane Protein and a Potential Scavenger of Porphyrins via an Autophagy-Dependent Degradation Mechanism. The Plant Cell 23: 785-805 von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF (2008) Heme, a Plastid-Derived Regulator of Nuclear Gene Expression in Chlamydomonas. The Plant Cell 20: 552-567 Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nature Reviews Genetics 9: 383-395 Woodson Jesse D, Perez-Ruiz Juan M, Chory J (2011) Heme Synthesis by Plastid Ferrochelatase I Regulates Nuclear Gene Expression in Plants. Current Biology 21: 897-903 Yabuta Y, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant and Cell Physiology 45: 1586-1594 Yang X-H, Xu Z-H, Xue H-W (2005) Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell Elongation. The Plant Cell 17: 116-131 Zhang Y (2013a) Ascorbate Biosynthesis in Plants. Ascorbic Acid in Plants. Springer New York, pp 35-43 Zhang Y (2013b) Biological Role of Ascorbate in Plants. Ascorbic Acid in Plants. Springer New York, pp 7-33 高艾玲 (2010) 阿拉伯芥 AtMAPRs 之分子特性研究. 臺灣大學微生物與生化學研究所學位論文. 臺灣大學, pp 1-221 郭時鈺 (2012) 阿拉伯芥中 AtMAPR3 表現受 d-amino levulinic acid 及逆境誘導之研究. 臺灣大學生化科技學系學位論文. 臺灣大學, pp 1-102 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60489 | - |
dc.description.abstract | Recombinant AtMAPR3 purified from E. coli has been shown to possess heme binding ability. AtMAPR3 expression is increased by treated with hydrogen peroxide (H2O2) or δ-amino levulinic acid (ALA), the precursor of tetrapyrroles. The ALA-induced AtMAPR3 expression is blocked by dipyridyl (DPD), an inhibitor of ferrochelatase, indicating a possible induction route via heme.
To further clarify if the “via heme” route related to the “via H2O2” route, we treated Arabidopsis with ascorbate, a H2O2 scavenger. It was surprised to find that the AtMAPR3 expression was increased by 8-fold after 6 hours treatment. This result suggested that the AtMAPR3 expression was most likely responsive to a reactive oxygen species (ROS) scavenging system. Since ALA is the precursor of several candidates of retrograde signaling molecules, whether AtMAPR3 expression was regulated by retrograde signaling was also studied. The expression of photosynthesis-associated nuclear genes (PhANGs) were monitored in wild-type, AtMAPR3 overexpression mutant (AtMAPR3-OX) and AtMAPR3 knockout mutant (AtMAPR3-KO) with or without ALA treatment. It was interesting that AtMAPR3 showed opposite expression profile to PhANGs in response to the tetrapyrrole perturbation. Further analysis concerning the role of AtMAPR3 in retrograde signaling is needed. A possible role of AtMAPR3 was proposed that it accommodated free heme and the expression of AtMAPR3 was through a ROS scavenging system triggered by a “specific ROS pool”, which was enhanced in this study by ALA treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:19:33Z (GMT). No. of bitstreams: 1 ntu-102-R00b22018-1.pdf: 2377542 bytes, checksum: 39c84301735cfbffea0cc341913738e9 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | Contents………………………………………………………………………………..I
Contents of figures………………………………………………………………….....IV Abbreviation List………………………………………………………………………V 中文摘要……………………………………………………………………………..VII Abstract……………………………………………………………………………...VIII Chapter 1 Introduction ................................................................................................... 1 1.1 Membrane-Associated Progesterone Receptor in Arabidopsis thaliana (AtMAPR) ....................................................................................................................................... 1 1.2 ALA is the precursor of tetrapyrroles ..................................................................... 2 1.2.1 ALA is synthesized via C5-pathway in plants .................................................. 2 1.2.2 Tetrapyrroles mediate various biological processes......................................... 3 1.3 ROS is everywhere in cell ....................................................................................... 4 1.4 Ascorbate is a plentiful antioxidant in plants .......................................................... 5 1.4.1 Ascorbate is synthesized from D-glucose-6-phosphate.................................... 5 1.4.2 Ascorbate has multiple functions ..................................................................... 5 1.5 Plastid to nucleus intracellular signaling................................................................. 6 1.5.1 Historical overview of retrograde research ...................................................... 7 1.5.2 The candidates of retrograde signal molecules are generated in chloroplasts.. 7 1.6 Aims of the research................................................................................................ 9 Chapter 2 Materials and Methods ................................................................................ 10 2.1 Materials ........................................................................................................................... 10 2.1.1 Wild type.................................................................................................................... 10 2.1.2 AtMAPR3 knockout mutant ...................................................................................... 10 2.1.3 AtMAPR3 overexpression mutant ............................................................................. 10 2.1.4 AtMAPR3 promoter500::GUS ................................................................................... 11 2.2 Methods............................................................................................................................. 12 2.2.1 Plant growth condition ............................................................................................... 12 2.2.2 Chemical treatments before sampling........................................................................ 12 2.2.3 H2O2 gradient plant .................................................................................................... 13 2.2.4 Quantitative real-time PCR (qRT-PCR) .................................................................... 14 2.2.5 Histochemical analysis of β-glucuronidase (GUS) activity ....................................... 15 2.2.6 Detection of H2O2 ...................................................................................................... 16 Chapter 3 Results ......................................................................................................... 17 3.1 Ascorbate induced AtMAPR3 expression higher than ALA did ....................................... 17 3.2 Histochemistry with transgenic plant carrying pAtMAPR3::GUS.................................... 20 3.2.1 AtMAPR3::GUS histochemical analysis correlated with qRT-PCR results............... 20 3.2.2 AtMAPR3::GUS showed activity in cotyledons......................................................... 22 3.3 Is AtMAPR3 expression regulated by retrograde signaling?............................................. 23 3.4 Does AtMAPR3 mutants accumulate more H2O2? ........................................................... 24 3.5 Phenotype observation of AtMAPR3 mutants in response to oxidative stress ................. 26 Chapter 4 Discussion ................................................................................................... 27 4.1 Does AtMAPR3 remove free heme?................................................................................. 28 4.2 AtMAPR3 expression may be induced by specific “H2O2 pool” ....................................... 29 4.3 AtMAPR3 expression may be driven by heme-induced ROS scavenging system ............ 30 Chapter 5 Prospect ....................................................................................................... 32 5.1 The induction route of AtMAPR3...................................................................................... 32 5.1.1 The fate of exogenous ALA in the cell ...................................................................... 32 5.1.2 The connection between ALA, H2O2 and ascorbate on the induction of AtMAPR3 expression............................................................................................................................ 33 5.2 The physiological roles for AtMAPR3 ............................................................................. 33 5.2 The physiological roles for AtMAPR3 ............................................................................. 33 5.2.1 The cellular condition of AtMAPR3 mutants ............................................................ 33 5.2.2 Does AtMAP3 participate in the retrograde signaling? ............................................. 34 5.2.3 Possible physiological roles for AtMAPR3 in peroxisome ....................................... 34 References....................................................................................................................35 Figures………………………………………………………………………………..40 Appendices…………………………………………………………………………...54 | |
dc.language.iso | en | |
dc.title | AtMAPR3 受δ-amino levulinic acid 誘導而表現之機制研究 | zh_TW |
dc.title | Studies on the mechanism of ALA-induced AtMAPR3 expression | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王愛玉,李昆達,黃楓婷,廖憶純 | |
dc.subject.keyword | AtMAPR3,δ-aminolevulinic acid,Ascorbate,ROS pool,Retrograde, | zh_TW |
dc.relation.page | 55 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-16 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。