請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60486完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐宏民(Winston H. Hsu) | |
| dc.contributor.author | Hao-Ting Chang | en |
| dc.contributor.author | 張浩廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:19:28Z | - |
| dc.date.available | 2017-01-01 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | [1] Face.com. http://www.face.com.
[2] An-Jung Cheng, Yan-Ying Chen, Yen-Ta Huang, Winston H. Hsu, and Hong- Yuan Mark Liao. Personalized travel recommendation by mining people attributes from community-contributed photos. In Proceedings of the 19th ACM international conference on Multimedia, MM '11, pages 83--92, New York, NY, USA, 2011. ACM. [3] Amir Sadovnik, Andrew Gallagher, and Tsuhan Chen. It’s not polite to point: Describing peoplewith uncertain attributes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013. [4] Neeraj Kumar, Alexander C. Berg, Peter N. Belhumeur, and Shree K. Nayar. Attribute and simile classifiers for face verification. In The 12th IEEE International Conference on Computer Vision (ICCV), October 2009. [5] Neeraj Kumar, Peter N. Belhumeur, and Shree K. Nayar. Facetracer: A search engine for large collections of images with faces. In The 10th European Conference on Computer Vision (ECCV), October 2008. [6] Behjat Siddiquie, Rogerio Schmidt Feris, and Larry S. Davis. Image ranking and retrieval based on multi-attribute queries. In CVPR, pages 801--808. IEEE, 2011. [7] Bor-Chun Chen, Yan-Ying Chen, Yin-Hsi Kuo, and Winston H. Hsu. Scalable face image retrieval using attribute-enhanced sparse codewords. In IEEE Transactions on Multimedia, 2012. 24 [8] Daniel Vaquero, Rogerio Feris, Duan Tran, Lisa Brown, Arun Hampapur, and Matthew Turk. Attribute-based people search in surveillance environments. In IEEE Workshop on Applications of Computer Vision (WACV'09), Snowbird, Utah, December 2009. [9] Gang Wang, Andrew Gallagher, Jiebo Luo, and David Forsyth. Seeing people in social context: recognizing people and social relationships. In Proceedings of the 11th European conference on Computer vision: Part V, ECCV'10, pages 169--182, Berlin, Heidelberg, 2010. Springer-Verlag. [10] Huizhong Chen, Andrew Gallagher, and Bernd Girod. Describing clothing by semantic attributes. In Andrew W. Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, ECCV (3), volume 7574 of Lecture Notes in Computer Science, pages 609--623. Springer, 2012. [11] Andrew C. Gallagher and Tsuhan Chen. Using group prior to identify people in consumer images. In CVPR. IEEE Computer Society, 2007. [12] Ohil K. Manyam, Neeraj Kumar, Peter N. Belhumeur, and David J. Kriegman. Two faces are better than one: Face recognition in group photographs. In Jain et al. [25], pages 1--8. [13] Usman Tariq, Yuxiao Hu, and Thomas S. Huang. Gender and ethnicity identification from silhouetted face profiles. In Proceedings of the 16th IEEE international conference on Image processing, ICIP'09, pages 2413--2416, Piscataway, NJ, USA, 2009. IEEE Press. [14] Guangpeng Zhang and Yunhong. Hierarchical and discriminative bag of features for face profile and ear based gender classification. In Jain et al. [25], pages 1--8. [15] Matthew Toews and Tal Arbel. Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9):1567--1581, 2009. 25 [16] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Representing shape with a spatial pyramid kernel. In Proceedings of the 6th ACM international conference on Image and video retrieval, CIVR '07, pages 401--408, New York, NY, USA, 2007. ACM. [17] Markus Stricker and Markus Orengo. Similarity of color images. pages 381--392, 1995. [18] D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America. A, Optics and image science, 4(12):2379--2394, December 1987. [19] Timo Ojala, Matti Pietikainen, and David Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29:51--59, 1996. [20] Mark Schmidt. Ugm: Matlab code for undirected graphical models. http://www. di.ens.fr/$ hicksim$mschmidt/Software/UGM.html. [21] Rein-Lien Hsu, Mohamed Abdel-Mottaleb, and Anil K. Jain. Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):696--706, 2002. [22] U. Park and A. K. Jain. Face matching and retrieval using soft biometrics. IEEE Transactions on Information Forensics and Security, 2010. [23] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/ libsvm. [24] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm, 1996. 26 [25] Anil K. Jain, Arun Ross, Salil Prabhakar, and Jaihie Kim, editors. 5th IAPR International Conference on Biometrics, ICB 2012, New Delhi, India, March 29 - April 1, 2012. IEEE, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60486 | - |
| dc.description.abstract | 一般使用者所養成的上傳照片習慣,使得網路上的照片(consumer photo)快速增長。如何有效且快速的分析其內容,變成一個很重要的研究方向。現今研究指出。有出現人的照片是最容易讓人印象深刻的照片。為了方便分析這些包含人的照片,各種自動人物屬性偵測的技術如雨後春筍般出現。然而他們幾乎都只針對正臉去做討論,忽略了難度更高且在照片中也大量出現的側臉。此篇論文提出使用順向映射(forward mapping)之方式,來擷取側臉上相對應的區塊。利用此方式,可相當幅度改善基於視覺人臉屬性偵測(visual-based attribute detection)的準確度。除此之外,我們觀察到人臉屬性之間是有關連性存在的(例如老人通常會戴眼鏡),這代表著可以利用屬性之間的關聯性來幫助我們對於不同人臉屬性間,一起做偵測。同時我們還發現,同一張照片裡不同的人之間的屬性,也存在著關聯性(例如同一張照片裡面的人,大多時候都是同一種族)。因此,我們提出了利用人臉內部和外部關聯性(intra and inter attribute relations)來進一步提升基於視覺上側臉人臉屬性偵測的準確度。實驗結果顯示以上方法確實有效,有助於使側臉屬性偵測這個困難的問題,做得更好。 | zh_TW |
| dc.description.abstract | With the rapid growth of consumer photos, efficient and effective image analysis becomes a promising direction for recent researches. Especially, recent researchers found that the most memorable photos usually contain people. Hence, to provide more information for photos with people, automatic attribute detections spring out. Most prior studies focus on detecting attributes for frontal face while it is also essential and more challenging to detect attributes for profile face. We propose an idea of using forward mapping approach to extract corresponding facial parts on profile faces. The proposed method can considerably reduce the error rate of visual-based attribute detection for profile faces. In addition, we observe that facial attributes are highly correlated to each other (e.g., the elder might wear glasses) which implies we can jointly estimate the detection results between different attributes that depicting a person. Moreover, each photo usually contains more than one face. It means that there are some extra contexts information could be utilized since attributes between faces might also be correlated (e.g., family members are usually of the same race). Hence, we propose two context-augmented methods (intra and inter attribute relations) to further improve visual-based profile face attribute detection. Experimental results show that the proposed method can improve the facial attribute detection results indeed for side-viewed faces. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:19:28Z (GMT). No. of bitstreams: 1 ntu-102-R00922023-1.pdf: 6919236 bytes, checksum: 7bd1ede3889b542830e85b87d45cc137 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝ii 中文摘要iii Abstract iv Contents v List of Figures vii List of Tables ix 1 Introduction 1 1.1 Statistics on Consumer Photos . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Difficulties in Tackling Profile Face . . . . . . . . . . . . . . . . . . . . 3 1.3 Challenges and Opportunities . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Related Work 7 2.1 Facial Attribute Detection and It's Applications . . . . . . . . . . . . . . 7 2.2 Attribute Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Profile Face Attribute Detection . . . . . . . . . . . . . . . . . . . . . . 9 3 System Overview 11 v 4 Visual Based Profile Attribute Detection 12 4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Face Parts Extraction with Forward Mapping . . . . . . . . . . . . . . . 13 4.3 Mid-level Feature Extraction and Face Attributes Learning . . . . . . . . 14 5 Context Aware Profile Attribute Detection 15 5.1 Intra Attribute Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Inter Attribute Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6 Experiment 18 6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.3 Comparison with Baseline Methods . . . . . . . . . . . . . . . . . . . . 19 6.4 Effects from Intra Attribute Relations . . . . . . . . . . . . . . . . . . . 20 6.5 Effects from Inter Attribute Relations . . . . . . . . . . . . . . . . . . . 21 7 Conclusion 23 Bibliography 24 | |
| dc.language.iso | en | |
| dc.subject | 人臉屬性偵測 | zh_TW |
| dc.subject | 人臉特徵網路 | zh_TW |
| dc.subject | 側臉 | zh_TW |
| dc.subject | Facail Attributes Detection | en |
| dc.subject | Profile Face | en |
| dc.subject | Attribute Relations | en |
| dc.title | 利用背景資訊與人臉特徵網路強化側臉人臉屬性偵測 | zh_TW |
| dc.title | Context-Augmented Profile Face Attributes Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳祝嵩(Chu-Song Chen),林彥宇(Yen-Yu Lin) | |
| dc.subject.keyword | 人臉屬性偵測,側臉,人臉特徵網路, | zh_TW |
| dc.subject.keyword | Facail Attributes Detection,Profile Face,Attribute Relations, | en |
| dc.relation.page | 27 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
