Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60462
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈弘俊(Horn-Jiunn Sheen)
dc.contributor.authorTing-Ya Liaoen
dc.contributor.author廖亭雅zh_TW
dc.date.accessioned2021-06-16T10:18:50Z-
dc.date.available2018-08-27
dc.date.copyright2013-08-27
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation'財政部關稅總局統計資料庫.' http://www.customs.gov.tw/StatisticWeb/News.aspx
'Plant Viruses Online.' http://sdb.im.ac.cn/vide/descr531.htm
Insight 3g User Guide. TSI, 2009.
Adrian, R.J., 'Image Shifting Technique to Resolve Directional Ambiguity in Double-Pulsed Velocimetry.' Applied Optics Vol. 25, pp. 3855-3858, 1986a.
Adrian, R.J., 'Multi-Point Optical Measurements of Simultaneous Vectors in Unsteady Flow—a Review.' International Journal of Heat and Fluid Flow Vol. 7, pp. 127-145, 1986b.
Adrian, R.J., and Westerweel, J., Particle Image Velocimetry. Cambridge University Press, 2011.
Akin, A., and Wu, C.C. . 'Chemiluminescent Detection of Infectious Bursal Disease Virus with a Pcr-Generated Non-Radiolabeled Probe.' Journal of Veterinary Diagnostic Investigation Vol. 5, pp. 166-173, 1993.
Astalan, A.P. et al., 'Biomolecular Reactions Studied Using Changes in Brownian Rotation Dynamics of Magnetic Particles.' Biosensors and Bioelectronics Vol. 19, pp. 945-951, 2004.
Baek, S.J. , and Lee, S. J. . 'A New Two-Frame Particle Tracking Algorithm Using Match Probability.' Experiments in Fluids Vol. 22, pp. 23-32, 1996.
Batchelor, G.K., and Green, J.T., 'The Hydrodynamic Interaction of Two Small Freely-Moving Spheres in a Linear Flow Field.' Journal of Fluid Mechanics Vol. 56, pp. 375-400, 1972.
Bijaisoradat, M., and Kuhn, C.W., 'Detection of Two Viruses in Peanut Seeds by Complementary DNA Hybridization Tests.' Plant Desease Vol. 72, 1988.
Bos, L., Iintroduction to Plant Virology. Vol. 27: John Wiley & Sons Incorporated, 1986.
Brenner, H., 'The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface.' Chemical Engineering Science Vol. 16, pp. 242-251, 1961.
Christie, R.G., and Edwardson, J.R. . Light and Electron Microscopy of Plant Virus Inclusions. Florida Agricultural Experiment Stations Monograph Series, 1977.
Christie, S.R. et al., 'Electron Microscopy of Negatively Stained Clarified Viral Concentrates Obtainws from Small Tissue Samplea with Appendices on Negative Staining Techniques.'pp. 45, 1987.
Clark, M.F., 'Immunosorbent Assays in Plant Developments in Plant Virology.' Annual Review of Phytopathology Vol. 19, pp. 83-106, 1981.
Clark, W.R., Experimental Foundations of Modern Immunology 2nd Ed. New York: John Wiley & Sons Incorporated, 1983.
Cowen, E.A., and Monismith, S.G., 'A Hybrid Digital Particle Tracking Velocimetry Technique.' Experiments in Fluids Vol. 22, pp. 199-211, 1997.
Dekker, E.L. et al., 'Characterization of Potyvirused from Tulip and Lily Which Caused Tulip-Breaking.' Journal of General Virology Vol. 34, pp. 475-483, 1993.
Fan, Y.J. et al., 'A Quantitative Immunosensing Technique Based on the Measurement of Nanobeads' Brownian Motion.' Biosensors and Bioelectronics Vol. 25, pp. 688-694, 2009.
Frenkel, M.J. et al., 'Differentiation of Potyvirused Amd Their Strains by Hybridization with the 3' Non-Coding Region of the Viral Genome.' J Virol Methods Vol. 3, pp. 51-62, 1992.
Fujita, I. et al., 'Large-Scale Particle Image Velocimetry for Flow Analysis in Hydraulic Engineering Applications.' Journal of Hydraulic Research Vol. 36, pp. 397-414, 1988.
Gao, X. et al., 'In Vivo Molecular and Cellular Imaging with Quantum Dots.' Current Opinion in Biotechnology Vol. 16, pp. 63-72, 2005.
Goldman, A.J. et al., 'Slow Viscous Motion of a Sphere Parallel to a Plane Wall—I Motion through a Quiescent Fluid.' Chemical Engineering Science Vol. 22, pp. 637-651, 1967.
Hamilton, R. I. et al., 'Guidelines for the Identification and Characterization of Plant Viruses.' Journal of general virology Vol. 54, pp. 223-241, 1981.
Hermanson, G.T., Bioconjugate Techniques, 2nd Ed.: Amsterdam: Academic Press, 2008.
Joshi, S. R., 'Improvement of Algorithm in the Particle Tracking Velocimetry Using Self-Organizing Maps.' Journal of the Institute of Engineering Vol. 7, 2009.
Kaga, A. et al., 'Flow Feld Estimation Using Piv-Data and Fuid Dynamic Equations.' Proc. 2nd International Workshop on PIV pp. 131-136, 1997.
Kao, M.H., and Yodh, A.G. . 'Observation of Brownian Motion on the Time Scale of Hydrodynamic Interactions.' Physical Review Letters Vol. 70, pp. 242-245, 1993.
Keane, R.D., and Adrian, R. J. . 'Theory of Cross-Correlation Analysis of Piv Images ' Applied Scientific Research Vol. 49, pp. 192-215, 1992.
Keane, R.D. et al., 'Super-Resolution Particle Imaging Velocimetry.' Measurement Science and Technology Vol. 6, pp. 754-768, 1998.
Kihm, K.D. et al., 'Near-Wall Hindered Brownian Diffusion of Nanoparticles Examined by Three-Dimensional Ratiometric Total Internal Reflection Fluorescence Microscopy (3-D R-Tirfm).' Experiments in Fluids Vol. 37, pp. 811-824, 2004.
Kozack, R.E., and Subramaniam, S., 'Brownian Dynamics Simulations of Molecular Recognition in an Antibody-Antigen System.' Protein Science Vol. 2, pp. 915-926, 1993.
Kurstak, E., Handbook of Plant Virus Infections. Comparative Diagnosis. New York: Elsevier/North Holland Biomedical Press, 1982.
Labonte’, G., 'A New Neural Network for Particle-Tracking Velocimetry.' Experiments in Fluids Vol. 26, pp. 340-346, 1999.
Lavalette, D. et al., 'Proteins as Micro Viscosimeters: Brownian Motion Revisited.' European Biophysics Journal Vol. 35, pp. 517-522, 2006.
Lee, G.M. et al., 'Direct Observation of Brownian Motion of Lipids in a Membrance.' Proceedings of the National Academy of Sciences of the United States of America Vol. 88, pp. 6274-6278, 1991.
Lin, B. et al., 'Direct Measurements of Constrained Brownian Motion of an Isolated Sphere between Two Walls.' PHYSICAL REVIEW E Vol. 62, pp. 3909-3919, 2000.
Lourenco, L. et al., 'Noninvasive Experimental Technique for the Measurement of Unsteady Velocity Fields.' AIAA Journal Vol. 24, pp. 1715-1717, 1986.
Lourenco, L., and Krothapalli, A., 'The Role of Photographic Parameters in Laser Speckle or Particle Image Displacement Velocimetry.' Experiments in Fluids Vol. 5, pp. 29-32, 1987.
Medina-Noyola, M. . 'Long-Time Self-Diffusion in Concentrated Colloidal Dispersions.' Physical Review Letters Vol. 20, pp. 2705-2708, 1988.
Melling, A., 'Tracer Particles and Seeding for Particle Image Velocimetry.' Measurement Science and Technology Vol. 8, pp. 1406-1416, 1997.
Mello, L.D., and Kubota, L.T., 'Review of the Use of Biosensors as Analytical Tools in the Food and Drink Industries.' Food Chemistry Vol. 77, pp. 237-256, 2002.
Prasad, A.K., and Adrian, R. J., 'Stereoscopic Particle Image Velocimetry Applied to Liquid Flows.' Experiments in Fluids Vol. 15, pp. 49-60, 1993.
Raffel, M. et al., Particle Image Velocimetry: A Practical Guide. Springer-Verlag, 2002.
Richard, A.L.J., Soft Condensed Matter, 1st Ed. Oxford University Press, 2002.
Sadr, R. et al., 'An Experimental Study of Electro-Osmotic Flow in Rectangular Microchannels.' Journal of Fluid Mechanics Vol. 506, pp. 357-367, 2004.
Scheller, F., and Schubert, F., Biosensor. New York, USA: Elsevier Science Publisging Inc., 1992.
Shigeru, M., and Hiroshi, S. . 'Measurement of Unsteady Separated Flows on a Blunt Plate by a Fourier Transform Method.' Flow Visualization VI pp. 710-714, 1992.
Turner, A.P.F., 'Current Trends in Biosensor Research and Development.' Sensord and Actuators Vol. 17, pp. 433-450, 1989.
Uemura, T. et al., 'High Speed Algorithm of Image Analysis for Real Time Measurement of Two-Dimensional Velocity Distribution.' Flow Visualization Vol. 85, pp. 129-134, 1989.
van Ommering, Kim et al., 'Confined Brownian Motion of Individual Magnetic Nanoparticles on a Chip: Characterization of Magnetic Susceptibility.' Applied Physics Letters Vol. 89, pp. 142511, 2006.
van Regenmortal, M.H.V., Serology and Immunochemistry of Plant Viruses. New York: Academic Press, 1982.
Vogel, A., and Lauterborn, W., 'Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics.' Applied Optics Vol. 27, pp. 1869-1876, 1988.
Willert, C., 'Stereoscopic Particle Image Velocimetry for Application in Wind Tunnel Flows.' Measurement Science and Technology Vol. 8, pp. 1465-1479, 1997.
Willert, C.E., and Gharib, M. . 'Digital Particle Image Velocimetry.' Experiments in Fluids Vol. 10, pp. 181-193, 1991.
Yunker, P.J. et al., 'Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions.' Nature Vol. 476, pp. 308-311, 2011.
Zettner, C.M., and Yoda, M., 'Particle Velocity Field Measurements in a near-Wall Flow Using Evanescent Wave Illumination.' Experiments in Fluids Vol. 34, pp. 115-121, 2003.
王子瑜、曹恒光. '布朗運動、郎之萬方程式、與布朗動力學.' 物理雙月刊第廿七卷第三期 pp. 456-460, 2005.
林咸嘉. '蘭花產業之智慧資源規劃.' 碩士論文. 國立政治大學, 2007.
柯雅卿. '通用型影像量測系統應用研究.' 碩士論文. 國立成功大學, 2004.
范育睿. '利用微粒子追蹤測速儀量測c反應蛋白之布朗運動及其反應檢測.' 碩士論文. 國立台灣大學, 2008.
孫立志. '基於多尺度德光流算法在piv中的應用.' 大連理工大學, 2006.
張清安. '植物病毒鑑定及診斷新技術.' 台灣省農業試驗所特刊第57號 pp. 35-45, 1996.
張清安. '蘭花病毒之診斷、鑑定與偵測.' 植物重要防疫檢疫病害診斷鑑定技術研習會專刊(五),pp. 103-118, 2006.
陳正育. '應用粒子布朗運動檢測技術結合漸逝波照明於血輕中量測c反應蛋白濃度.' 碩士論文. 國立台灣大學, 2012.
陳鐶中. '利用共聚焦掃描顯微鏡研究螢光分子在溶液中的動力學現象.' 碩士論文. 國立台灣大學, 2007.
馮志峯. '台灣蘭花在美國市場的商業機會研究.' 碩士論文. 政治大學, 2008.
楊玉婷. '全球蘭花發展現況與未來展望.' 台灣經濟研究月刊,pp. 36-41, 2010.
劉宜鑫. '利用奈米粒子布朗運動生醫感測技術於心血管疾病危險因子之檢測.' 碩士論文. 國立台灣大學, 2009.
劉慶川. '共焦顯微鏡與螢光相關光譜分析在微流體聚焦之研究.' 碩士論文. 國立台灣大學, 2008.
鄧喬廸. '量測奈米粒子之布朗運動用於檢測齒舌蘭輪斑病毒.' 碩士論文. 國立台灣大學, 2011.
盧建、李榮先、周力行. '射流稀疏顆粒圖像piv算法應用.' 中國化工學報 Vol. 56, pp. 1206-1208, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60462-
dc.description.abstract本研究成功開發一新式檢測方法,以布朗運動以及抗原與抗體間之專一性辨認做為檢測機制。實驗使用修飾上抗體之奈米粒子溶液與抗原齒舌蘭輪斑病毒(Odontoglossum ringspot virus, ORSV)溶液做反應,並以微粒子追蹤測速儀(micro-Particle Pracking Velocimetry, micro-PTV)進行量測與分析。結果顯示修飾上抗體的奈米粒子在加入抗原之後其布朗運動速度逐漸趨緩,且減緩趨勢隨抗原濃度增加而增大。
實驗亦確認了結果的重現性(Reproducibility)以及抗原與抗體間的辨識專一性(Specific Relationship),且修飾過後的奈米粒子使用期限經實驗證實可達一年以上,除此之外,病株的實際檢測亦經確認可行。
本研究另以酵素連結免疫分析法(Enzyme-Linked Immunosorbent Assay, ELISA)之結果與本實驗做對照,除了驗證本實驗所用之抗體與抗原的辨認反應之外,亦提出本研究方法與酵素連結免疫分析法的比較及增加靈敏度的方式。此檢測方法能夠延伸應用於其他抗原與抗體間的辨識反應。
zh_TW
dc.description.abstractWe have successfully developed a novel virus detection method based on antigen-antibody interactions and Brownian motion. The interactions between the antigen (Odontoglossum ringspot virus, ORSV) and nanobeads functionalized with the antibody (ORSV IgG) are recorded by micro-Particle Tracking Velocimetry (micro-PTV). The binding process in which ORSV conjugates to antibody-coated nanoparticles leads to an increase of the average diameter of the nanoparticles, the Brownian velocities therefore decrease. In other words, higher concentrations of ORSV will contribute to lower Brownian velocity of nanoparticles.
Our experiments confirm the reproducibility and the specific relationship between the antibody and the antigen. The active lifespan of the functionalized nanoparticles, confirmed by the experiments, is at least one year. Besides, Virus detection in real condition is applicable as well.
The results of Enzyme-Linked Immunosorbent Assay (ELISA) serve as the control groups and confirm the interactions between the antigen and the antibody. This economical and efficient method can also be optimized to reach the comparable reliability of ELISA under different conditions. Therefore, this method may be applied in further determination of other antigen-antibody interactions.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:18:50Z (GMT). No. of bitstreams: 1
ntu-102-R99543027-1.pdf: 3961162 bytes, checksum: 4ddf8e12ce1bb94ca3e585aeeef45f1a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝…………………………………………………………………………. i
摘要…………………………………………………………………………. ii
Abstract……………………………………………………………………… iii
目錄…………………………………………………………………………. iv
表目錄……………………………………………………………………… viii
圖目錄……………………………………………………………………… ix
符號說明…………………………………………………………………… xi
第一章 緒論……………………………………………………………… 1
1-1 前言………………………………………………………………….. 1
1-2 研究動機與目的…………………………………………………….. 3
1-3 研究方法…………………………………………………………….. 3
1-4 論文架構…………………………………………………………….. 4
第二章 文獻回顧…………………………………………………………. 5
2-1生物感測簡介………………………………………………………… 5
2-1-1 生物感測基本工作原理……………………………………… 5
2-2 蘭花病毒檢測法文獻回顧………………………………………….. 6
2-2-1蘭花病毒簡介…………………………………………………. 6
2-2-2蘭花病毒檢測文獻回顧……………………………………… 7
2-2-2-1 生物檢定法…………………………………………… 8
2-2-2-2 電子顯微鏡觀察法…………………………………… 8
2-2-2-3 光學顯微鏡觀察法…………………………………… 9
2-2-2-4 抗血清檢定法……………………………………….. 9
2-2-2-5 核酸探針檢定法……………………………………… 11
2-2-2-6 聚合酶連鎖反應檢定法……………………………… 11
2-4 布朗運動文獻回顧…………………………………………………... 12
2-5 微粒子影像測速儀/粒子追蹤測速儀文獻回顧…………………….. 13
第三章 布朗運動…………………………………………………………. 17
3-1 布朗運動數學模型………………………………………………….. 18
3-1-1 愛因斯坦關係式……………………………………………… 18
3-1-2 朗之文方程式………………………………………………… 18
3-2 沉降平衡…………………………………………………………….. 20
3-3 膠體粒子……………………………………………………………... 20
第四章 實驗設備與實驗方法……………………………………………. 23
4-1微粒子影像與微粒子追蹤測速儀原理……………………………… 23
4-2 微粒子影像/追蹤測速實驗設備…………………………………….. 25
4-2-1 光源裝置……………………………………………………… 26
4-2-2 影像擷取裝置………………………………………………… 26
4-2-3 同步器………………………………………………………… 26
4-2-4 影像分析軟體………………………………………………… 27
4-3 奈米粒子表面之抗體修飾………………………………………….. 27
4-3-1 螢光粒子之選用……………………………………………… 27
4-3-2 奈米粒子表面之抗體修飾流程……………………………… 28
4-4 咖啡環效應與觀測腔體製作……………………………………….. 30
4-4-1 PDMS觀測腔體製作…………………………………………. 30
4-4-2 雙玻片夾層觀測腔體製作…………………………………… 31
4-5 實驗步驟……………………………………………………………... 31
4-5-1 視野校正……………………………………………………… 31
4-5-2 布朗運動理論驗證…………………………………………… 32
4-5-2-1 流體黏度之穩定性量測……………………………… 33
4-5-2-2 各維度之速度關係與粒徑大小對布朗運動之影響… 33
4-5-3重現性確認實驗………………………………………………. 34
4-5-4專一性測試實驗………………………………………………. 34
4-5-5 抗體球使用期限測試………………………………………… 34
4-5-6 染病植株實際檢測…………………………………………… 34
4-5-6-1 實際檢測流體黏滯性穩定分析……………………… 35
4-5-6-2 奈米粒子布朗運動穩定性分析……………………… 35
4-5-6-3 實際檢測結果分析…………………………………… 35
4-6 穿透式電子顯微鏡影像驗證………………………………………... 36
4-7 酵素連結免疫分析法結果對照……………………………………... 37
第五章 實驗結果與討論………………………………………………… 39
5-1 微粒子追蹤測速儀與布朗運動分析……………………………….. 39
5-1-1 視野校正與影像擷取………………………………………… 39
5-1-2 修飾上抗體之螢光粒子濃度參數決定……………………… 40
5-1-3 其餘觀測限制與要點………………………………………… 40
5-2 流體黏度之穩定性量測分析……………………………………….. 41
5-3 布朗運動理論驗證…………………………………………………... 42
5-3-1 各維度之速度關係…………………………………………… 42
5-3-2 粒徑大小對布朗運動之影響………………………………… 42
5-4 重現性分析………………………………………………………….. 43
5-5 專一性測試實驗…………………………………………………….. 44
5-6 抗體球之製作與使用期限………………………………………….. 44
5-7 染病植株實際檢測…………………………………………………... 46
5-7-1 實際檢測流體黏滯性穩定分析……………………………… 46
5-7-2 奈米粒子布朗運動穩定性分析……………………………… 46
5-7-3 實驗檢測結果與完全反應時間……………………………… 47
5-7-4 實驗檢測之靈敏度與可靠度………………………………… 47
5-8 電子顯微鏡影像驗證………………………………………………... 48
5-9 酵素連結免疫分析法結果對照…………………………………….. 48
5-9-1 酵素連結免疫分析法初步測試……………………………… 48
5-9-2 酵素連結免疫分析法實驗測試對照…………..…………….. 49
第六章 結論………………………………………………………………. 51
6-1結論…………………………………………………………………… 51
6-2 未來展望…………………………………………………………….. 51
參考文獻…………………………………………………………………….. 84
dc.language.isozh-TW
dc.title以布朗運動檢測技術應用於齒舌蘭輪斑病毒檢測zh_TW
dc.titleA Biosensing Method Based on Nano-Particles' Brownian Motion Applied to the Detection of Odontoglossum ringspot virusen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor張雅君(Ya-Chun Chang)
dc.contributor.oralexamcommittee吳光鐘(Kuang-Chong Wu),黃榮山(Long-Sun Huang)
dc.subject.keyword病毒檢測,布朗運動,奈米粒子,齒舌蘭輪斑病毒,專一性,微粒子追蹤測速儀,酵素連結免疫分析法,zh_TW
dc.subject.keywordvirus detection,Brownian motion,nanoparticle,ORSV,specific relationship,micro-PTV,ELISA,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved