Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓(Jen-Yu Han)
dc.contributor.authorYa-Hsuan Luen
dc.contributor.author呂亞宣zh_TW
dc.date.accessioned2021-06-16T10:18:48Z-
dc.date.available2020-07-23
dc.date.copyright2020-07-23
dc.date.issued2020
dc.date.submitted2020-07-20
dc.identifier.citationAckermann, S., Angrisano, A., Del Pizzo, S., Gaglione, S., Gioia, C., Troisi, S.,2013. Digital surface models for GNSS mission planning in critical environments. Journal of Surveying Engineering, 140(2):04014001.
Chen, H. C., Huang, Y. S., Chiang, K. W., Yang, M., Rau, R. J., 2009. The performance comparison between GPS and BeiDou‐2/compass: A perspective from Asia. Journal of the Chinese institute of engineers, 32(5):679-689.
Dutt, V. S. I., Rao, G. S. B., Rani, S. S., Babu, S. R., Goswami, R., Kumari, C. U. 2009. Investigation of GDOP for Precise user Position Computation with all Satellites in view and Optimum four Satellite Configurations. J. Ind. Geophys. Union, 13(3):139-148.
Haala, N., Brenner, C., 1999. Extraction of buildings and trees in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3):130-137.
Han, J. Y., Juan, T. H., 2016. Image-based approach for satellite visibility analysis in critical environments. Acta Geodaetica et Geophysica, 51(1):113-123.
Han, J. Y., Li, P. H., 2010. Utilizing 3-D topographical information for the quality assessment of a satellite surveying. Applied Geomatics, 2(1):21-32.
Kada, M., McKinley, L. ,2009. 3D building reconstruction from LiDAR based on a cell decomposition approach. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 3/W4
Kwak, D. A., Lee, W. K., Lee, J. H., Biging, G. S., Gong, P., 2007. Detection of individual trees and estimation of tree height using LiDAR data. Journal of Forest Research, 12(6):425-434.
Leick, A., 2004. GPS satellite surveying third edition, John Wiley Sons., Hoboken, New Jersey, p.251-252
Noureldin, A., Karamat, T. B., Georgy, J., 2012. Fundamentals of inertial navigation, satellite-based positioning and their integration. Springer Science Business Media, Berlin, Heidelberg, p.30
Rottensteiner, F., Briese, C., 2002. A new method for building extraction in urban areas from high-resolution LIDAR data. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/A):295-301.
Rottensteiner, F., 2003. Automatic generation of high-quality building models from lidar data. IEEE Computer Graphics and Applications, 23(6):42-50.
Taylor, G., Li, J., Kidner, D., Brunsdon, C., Ware, M. , 2007. Modelling and prediction of GPS availability with digital photogrammetry and LiDAR. International Journal of Geographical Information Science, 21(1):1-20.
Wang, L., Groves, P. D., Ziebart, M. K. ,2013. GNSS shadow matching: Improving urban positioning accuracy using a 3D city model with optimized visibility scoring scheme. Journal of The Institute of Navigation, 60(3):195-207.
Zhang, K., Liu, G. J., Wu, F., Densley, L., Retscher, G., 2009. An investigation of the signal performance of the current and future GNSS in typical urban canyons in Australia using a high fidelity 3D urban model. Location Based Services and TeleCartography II, Springer, Berlin, Heidelberg, p.407-420
張郁翎,2017。以Google Street View影像進行地面動態載台衛星可視性分析,國立臺灣土木工程學研究所,碩士論文,臺北市。
莊佳頤,2013。地面動態載台GNSS相對定位品質評估,國立臺灣土木工程學研究所,碩士論文,臺北市。
李博涵,2009。利用數值地表模型進行衛星定位品質評估,國立臺灣土木工程學研究所,碩士論文,臺北市。
蕭國鑫,劉進金,陳大科,徐偉城,何心瑜,2007。多時影像與空載光達資料應用於地形變遷研究~ 以外傘頂沙洲為例. Journal of Photogrammetry and Remote Sensing, 12(4):419-429.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60461-
dc.description.abstract全球導航衛星系統(Global Navigation Satellite System,GNSS)提供全時性、全天候的連續及高精度三維位置與時間資訊,已被廣泛運用在測量工程與其他日常用途。然而,當地面點位受遮蔽物阻礙時,會嚴重干擾訊號傳遞,進而降低到衛星定位精度,若能針對這些遮蔽區域進行事前評估,就能設計適當的程序或替代方案,以確保或彌補測量成果品質。然而,此類分析牽涉到測站與周邊環境的複雜關係計算,分析過程費時耗力。本研究便以衛星可視性分析原理為主軸,引入空載光達點雲資料並結合二維建物成果圖進行真實地形遮蔽分析,並使用點雲柱狀分層法將遮蔽物儲存至建物向量式資料庫,再納入衛星軌道計算後求出衛星相對於測站的關係,即可計算出單一測站於一日內之PDOP預測值,進而求得出該日最佳觀測時刻。由數值實驗驗證顯示,使用本研究提出之分析流程約可達90%以上的預測衛星顆數正確率,而在時間效率上相較未經處理的原始點雲,速度快約11,000~36,000倍,證實本研究得以提出一套適用於大範圍區域的衛星可視性以及定位品質評估之可行方案。zh_TW
dc.description.abstractGlobal Navigation Satellite System (GNSS) is a matured modern technique for spatial data acquisition, and it has been widely used in the surveying field as well as in other engineering applications. However, how to make sure the accuracy of satellite positioning is still a crucial research topic. While the line between a satellite and a receiver on the ground is blocked by obstacles, the signal of satellite will be interfered. It will lead to bad accuracy of satellite positioning. Because topographic effects are considered the main factor that directly block signal transmission between satellites and receivers, this study integrated aerial borne LiDAR point clouds and a 2D building boundary map to provide reliable 3D spatial information to analyze topographic effects. Using such vector data not only reflected high-quality GNSS satellite visibility calculations, but also significantly reduced data amount and processing time. For this reason, the research aims to analyze the satellite visibility, which can simultaneously possess an efficient and reliable data acquisition without wasting time and human efforts.
This study proposes using superimposed column method to analyze GNSS receivers’ surrounding environments. The experiment result shows that using the superimposed column method can achieve a prediction accuracy of more than 90%, and the time efficiency is about 11,000~36,000 times faster than the original point cloud. It is confirmed that this study can propose a set of feasible solutions suitable for satellite visibility and positioning quality assessment in a large area.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:18:48Z (GMT). No. of bitstreams: 1
U0001-0607202012044800.pdf: 16402839 bytes, checksum: ac10c5f97adf26eb519e8b80bfc8a100 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 4
第二章 文獻回顧 5
2.1 衛星定位原理與定位品質評估 5
2.2 三維地形遮蔽分析技術方法 9
2.3 以光達進行相關地形之研究 16
2.4 小結 19
第三章 研究方法 21
3.1 地物空間資料處理 22
3.2 地物遮蔽效應分析 26
3.2.1 地物遮蔽搜尋方式 26
3.2.2 地物遮蔽仰角計算 27
3.3 可視衛星判斷與分析 28
3.3.1 衛星軌道計算 28
3.3.2 衛星位置坐標轉換 32
3.3.3 衛星可視性分析 34
第四章 實驗成果與分析 36
4.1 臺大校總區地物空間資料處理 36
4.1.1 資料介紹 36
4.1.2 空間資料預處理 38
4.1.3 單一測站之周邊地物遮蔽效應 41
4.2 單一測站之衛星可視性分析 43
4.3 成果分析與比較 45
4.3.1 點雲柱狀分層法與實地外業衛星可視性成果比較 45
4.3.2 點雲法、點雲柱狀分層法與網格法之地物遮蔽成果與效能比較 53
4.4 小結 59
第五章 結論與建議 61
5.1 結論 61
5.2 建議與未來工作 63
參考文獻 64
附錄 67
(一)2020/3/25各衛星於高遮蔽處之可視性skyplot 67
(二)2020/3/25衛星可視性skyplot於低遮蔽處 73
(三)可視衛星預估與實際接收成果差異原因:接近地物遮蔽仰角處 79
(四)可視衛星預估與實際接收成果差異成因:其他原因 91
dc.language.isozh-TW
dc.title以三維向量空間資訊進行都會區衛星可視性分析zh_TW
dc.titleUtilizing 3D Vector Spatial Data for Satellite Visibility Analysis in Urban Area
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭重言(Chung-Yen Kuo),景國恩(Kuo-En Ching),曾國欣(Kuo-Hsin Tseng)
dc.subject.keyword空載光達地形分析應用,三維地形遮蔽效應,衛星可視性分析,衛星定位精度品質評估,zh_TW
dc.subject.keywordLiDAR terrain analysis application,Topographic Effect,Satellite Visibility Analysis,DOP,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202001334
dc.rights.note有償授權
dc.date.accepted2020-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0607202012044800.pdf
  目前未授權公開取用
16.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved