Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群
dc.contributor.authorChing-Pei Chenen
dc.contributor.author陳慶沛zh_TW
dc.date.accessioned2021-06-16T10:18:24Z-
dc.date.available2018-09-06
dc.date.copyright2013-09-06
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation[1] Bionics. Available: http://en.wikipedia.org/wiki/Bionics
[2] Festo. SmartBird. Available: http://www.festo.com/cms/en_corp/11369.htm
[3] RoboPike. Available: http://robosapiens.mit.edu/wanda.htm
[4] LittleDog. Available: http://www.bostondynamics.com/robot_littledog.html
[5] RHex. Available: http://www.bostondynamics.com/robot_rhex.html
[6] BigDog. Available: http://www.bostondynamics.com/robot_bigdog.html
[7] CHEETAH. Available: http://www.bostondynamics.com/robot_cheetah.html
[8] LS3. Available: http://www.bostondynamics.com/robot_ls3.html
[9] PETMAN. Available: http://www.bostondynamics.com/robot_petman.html
[10] Honda. ASIMO. Available: http://world.honda.com/news/2011/c111108All-new-ASIMO/
[11] 王紹帆, '雙足機器人的設計與實現,' 碩士論文, 機械工程學研究所, 國立台灣大學, 台北, 2010.
[12] 陳均聖, '雙足機器人之機電整合與軌跡控制,' 碩士論文, 機械工程學研究所, 國立台灣大學, 台北, 2011.
[13] 盧兆慶, '雙足機器人之步態規劃與感測系統建置,' 碩士論文, 機械工程學研究所, 國立台灣大學, 台北, 2011.
[14] 陳敬宜, '雙足機器人轉彎步態與力回授步行步態開發,' 碩士論文, 機械工程學研究所, 國立台灣大學, 台北, 2012.
[15] 早稲田大学ヒューマノイド研究所. Available: http://www.humanoid.waseda.ac.jp/index-j.html
[16] K. Hashimoto, K. Hyun-jin, M. Nakamura, E. Falotico, L. Hun-ok, A. Takanishi, et al., 'Realization of biped walking on soft ground with stabilization control based on gait analysis,' in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, 2012, pp. 2064-2069.
[17] K. Hyun-jin, K. Hashimoto, H. Kondo, K. Hattori, K. Nishikawa, Y. Hama, et al., 'Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface,' in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 5167-5172.
[18] T. Takenaka, T. Matsumoto, and T. Yoshiike, 'Real time motion generation and control for biped robot -1st report: Walking gait pattern generation,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 1084-1091.
[19] T. Takenaka, T. Matsumoto, T. Yoshiike, and S. Shirokura, 'Real time motion generation and control for biped robot -2nd report: Running gait pattern generation,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 1092-1099.
[20] T. Takenaka, T. Matsumoto, and T. Yoshiike, 'Real time motion generation and control for biped robot -3rd report: Dynamics error compensation,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 1594-1600.
[21] T. Takenaka, T. Matsumoto, T. Yoshiike, T. Hasegawa, S. Shirokura, H. Kaneko, et al., 'Real time motion generation and control for biped robot -4th report: Integrated balance control,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 1601-1608.
[22] All-New ASIMO - New Features. Available: http://world.honda.com/news/2011/c111108All-new-ASIMO/video01/index.html
[23] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, et al., 'Humanoid robot HRP-2,' in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, 2004, pp. 1083-1090 Vol.2.
[24] K. Nishiwaki, J. Chestnutt, and S. Kagami, 'Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor,' The International Journal of Robotics Research, vol. 31, pp. 1251-1262, September 1, 2012 2012.
[25] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita, 'Cybernetic human HRP-4C,' in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on, 2009, pp. 7-14.
[26] S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, et al., 'Biped walking stabilization based on linear inverted pendulum tracking,' in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 4489-4496.
[27] ATLAS. Available: http://www.bostondynamics.com/robot_Atlas.html
[28] Meet ATLAS. Available: http://www.youtube.com/watch?v=zkBnFPBV3f0
[29] F. Asano, M. Yamakita, N. Kamamichi, and L. Zhi-Wei, 'A novel gait generation for biped walking robots based on mechanical energy constraint,' Robotics and Automation, IEEE Transactions on, vol. 20, pp. 565-573, 2004.
[30] H. Qiang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, et al., 'Planning walking patterns for a biped robot,' Robotics and Automation, IEEE Transactions on, vol. 17, pp. 280-289, 2001.
[31] S. Behnke, 'Online trajectory generation for omnidirectional biped walking,' in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 1597-1603.
[32] J. Denk and G. Schmidt, 'Synthesis of walking primitive databases for biped robots in 3D-environments,' in Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, 2003, pp. 1343-1349 vol.1.
[33] K. Nishiwaki, S. Kagami, J. J. Kuffner, M. Inaba, and H. Inoue, 'Online humanoid walking control system and a moving goal tracking experiment,' in Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, 2003, pp. 911-916 vol.1.
[34] P. Ill-Woo, K. Jung-Yup, L. Jungho, and O. Jun-Ho, 'Online free walking trajectory generation for biped humanoid robot KHR-3(HUBO),' in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 1231-1236.
[35] J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. Inaba, 'Online decision of foot placement using singular LQ preview regulation,' in Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on, 2011, pp. 13-18.
[36] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade, 'Footstep Planning for the Honda ASIMO Humanoid,' in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, 2005, pp. 629-634.
[37] K. Nishiwaki, 'Online walking control system for humanoids with short cycle pattern generation,' International Journal of Robotics Research, The, vol. 28, p. 729, // 2009.
[38] L. Jian and C. Weidong, 'Modeling and control for a biped robot on uneven surfaces,' in Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, 2009, pp. 2960-2965.
[39] B. J. Stephens and C. G. Atkeson, 'Dynamic Balance Force Control for compliant humanoid robots,' in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 1248-1255.
[40] B. J. Stephens and C. G. Atkeson, 'Push Recovery by stepping for humanoid robots with force controlled joints,' in Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, 2010, pp. 52-59.
[41] E. Ohashi, T. Sato, and K. Ohnishi, 'A Walking Stabilization Method Based on Environmental Modes on Each Foot for Biped Robot,' Industrial Electronics, IEEE Transactions on, vol. 56, pp. 3964-3974, 2009.
[42] G. Welch and G. Bishop, 'An introduction to the Kalman filter,' ed, 1995.
[43] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, et al., 'Biped walking pattern generation by using preview control of zero-moment point,' in Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, 2003, pp. 1620-1626 vol.2.
[44] R. S. Hartenberg and J. Denavit, Kinematic synthesis of linkages: McGraw-Hill New York, 1964.
[45] M. Vukobratović and B. Borovac, 'Zero-moment point—thirty five years of its life,' International Journal of Humanoid Robotics, vol. 1, pp. 157-173, 2004.
[46] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, 'The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation,' in Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on, 2001, pp. 239-246 vol.1.
[47] K. Nishiwaki and S. Kagami, 'High frequency walking pattern generation based on preview control of ZMP,' in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 2667-2672.
[48] R. E. Kalman, 'A new approach to linear filtering and prediction problems,' Journal of basic Engineering, vol. 82, pp. 35-45, 1960.
[49] L. Pei-Chun, H. Komsuoglu, and D. E. Koditschek, 'A leg configuration measurement system for full-body pose estimates in a hexapod robot,' Robotics, IEEE Transactions on, vol. 21, pp. 411-422, 2005.
[50] L. Pei-Chun, H. Komsuoglu, and D. E. Koditschek, 'Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits,' Robotics, IEEE Transactions on, vol. 22, pp. 932-943, 2006.
[51] T. Katayama, T. Ohki, T. Inoue, and T. Kato, 'Design of an optimal controller for a discrete-time system subject to previewable demand,' International Journal of Control, vol. 41, pp. 677-699, 1985/03/01 1985.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60446-
dc.description.abstract本論文主要內容為雙足機器人具機動調控性之穩定步行步態的設計與開發,主要包含三個子項目:線上步態生成演算法、本體狀態(body state)估測器、以及多重感測器回授控制步態開發。在線上步態生成演算法方面,分成步態規劃與軌跡生成兩個階層,首先基於機構與安全的限制條件,規劃穩定步行路徑直到機器人到達預設的目標點,在步行過程中若預設目標點更動,路徑也會線上即時修正。接續以現階段規畫好的路徑為基礎,即時生成零力矩點與腳板軌跡,並由預觀控制(Preview control)法則生成質心軌跡,最後,由逆運動學求得各關節軌跡作為機器人底層的控制輸入。在質心姿態估測器方面,以擴展卡爾曼濾波器(Extended Kalman filter)為基礎,融合關節角度(編碼器)、慣性量測單元(加速規、陀螺儀)以及傾斜儀等感測器資訊,估測出機器人在三度空間中質心移動與本體轉動的完整狀態。在回授控制步態方面,藉由本論文提出的質心位置控制器以及引進的力矩控制器,即時調控機器人各關節驅動狀態以提高步行穩定性,其中質心位置控制器倚賴本體狀態估測器所提供質心追蹤誤差資訊,來調控機器人質心位置,而力矩控制器則調整踝關節角度以達成零力矩點分配器計算出的目標力矩。本論文並以實驗室現有質心加速度修補回授控制機制為基礎,以機器人簡化動態模型觀點出發,提出此控制器的參數設計流程。將此三個子項目整合,完成開發出一個具機動調控性之穩定步行步態所需的各個面向。最後,前述的三個子項目均已實際架設在實驗室現有雙足機器人上,並以實驗驗證其可行性與動態表現。zh_TW
dc.description.abstractThe main content of this thesis is design and development of a flexible stable walking gait for a biped robot, which contains three parts: online gait generation, body state estimator and multi-sensor feedback control gait. With respect to online gait generation, the algorithm is composed of gait planning and trajectory generation in layered structure. First, the gait planning algorithm designs stable walking gaits towards online destination point with constraint of mechanism and safety, and then the trajectory generation algorithm uses polynomial curve to generate Zero-Moment Point (ZMP) and foot trajectories according to planned gaits. After that, Preview control calculates trajectory of Center of Mass (CoM) corresponding to ZMP trajectory. Finally, inverse kinematics is applied to obtain the trajectories of each actuated joints in real-time, adopting specified values as control points. The proposed body state estimator is designed based on the Extended Kalman filter with sensory information from joint angles (encoders), an inertial measurement unit (accelerometer and gyroscope), and an inclinometer. The estimator estimates the full state of the CoM which contains translation and rotation motion in three-dimensional space. On the multi-sensor feedback control side, we propose a CoM position controller and introduce a torque controller to stabilize walking by modifying inverse kinematics in real-time. The CoM position controller relies on CoM tracking errors information from body state estimator to regulate the CoM of robot. The torque controller modifies joint angles of ankles to realize the foot reference torque calculated by the ZMP distributor, and this thesis proposes a design process to determine parameters of the controller based on existing CoM acceleration feedback control method from simplified dynamic model’s viewpoint. Integrating the three parts, we fulfilled the development of a flexible stable walking gait in many perspective. Finally, the former three parts is implemented on a child-size bipedal robot, and verified the feasibility and dynamic performance experimentally.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:18:24Z (GMT). No. of bitstreams: 1
ntu-102-R00522810-1.pdf: 3610674 bytes, checksum: 3c8d66d9f57c9b5279551b9b904ce9ac (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
附錄ㄧ 符號對照表 XI
第1章 緒論 1
1.1前言 1
1.2研究動機 1
1.3文獻回顧 2
1.4貢獻 3
1.5論文架構 4
第2章 雙足機器人動力學 6
2.1機器人尺寸與機電架構 6
2.2運動學 8
2.2.1順運動學 8
2.2.2逆運動學 12
2.3動力學 15
2.3.1零力矩點理論 15
2.3.2動態模型 19
第3章 線上步態生成 23
3.1線上步態生成架構 23
3.1.1階層架構 23
3.1.2線上即時生成 25
3.2步態規劃演算法 26
3.2.1架構 26
3.2.2機器人狀態 27
3.2.3設計參數 29
3.2.4步態規劃概念 30
3.2.5限制條件 32
3.2.6擺動腳踏點規劃 37
3.2.7準備階段(P1) 39
3.2.8步行階段(P2) 40
3.2.9結束階段(P3) 41
3.3軌跡生成演算法 42
3.3.1五次多項式 43
3.3.2質心軌跡 44
3.3.3腳板軌跡 45
3.3.4髖關節補償軌跡 47
3.3.5關節軌跡 48
3.4模擬結果 48
3.5本章結論 53
第4章 雙足機器人質心狀態估測 54
4.1卡爾曼濾波器 54
4.1.1簡介 54
4.1.2基本卡爾曼濾波 54
4.1.3擴展卡爾曼濾波器 55
4.2質心狀態估測器 57
4.2.1架構 57
4.2.2平移運動 59
4.2.3旋轉運動 64
4.3實驗結果 70
4.4本章結論 74
第5章 雙足機器人多感測器回授控制 75
5.1預觀控制 75
5.1.1簡介 75
5.1.2系統模型 76
5.1.3控制器設計 77
5.2多感測器回授控制 79
5.2.1質心位置控制器 81
5.2.2力矩控制器 82
5.3實驗結果 87
5.3.1原地左轉45度 89
5.3.2依線上給定目標點步行 91
5.4本章結論 95
第6章 結論與未來展望 96
6.1結論 96
6.2未來展望 97
參考文獻 98
dc.language.isozh-TW
dc.subject本體狀態估測器zh_TW
dc.subject預觀控制zh_TW
dc.subject步態規劃zh_TW
dc.subject雙足機器人zh_TW
dc.subject零力矩點zh_TW
dc.subject回授步態zh_TW
dc.subjectpreview controlen
dc.subjectgait planningen
dc.subjectbody state estimatoren
dc.subjectfeedback gaiten
dc.subjectZMPen
dc.subjectbiped roboten
dc.title雙足機器人步態之線上生成與多感測器回授控制zh_TW
dc.titleOnline Gait Generation and Multi-sensor Feedback Control for a Biped Roboten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃光裕,顏炳郎
dc.subject.keyword雙足機器人,步態規劃,本體狀態估測器,回授步態,零力矩點,預觀控制,zh_TW
dc.subject.keywordbiped robot,gait planning,body state estimator,feedback gait,ZMP,preview control,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2013-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved