請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60441
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭仁傑(Jen-Chieh Shiao) | |
dc.contributor.author | Chieh Huang | en |
dc.contributor.author | 黃婕 | zh_TW |
dc.date.accessioned | 2021-06-16T10:18:16Z | - |
dc.date.available | 2015-08-23 | |
dc.date.copyright | 2013-08-23 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-16 | |
dc.identifier.citation | Alm G (1946) Reasons for the occurrence of stunted fish populations: with special regard to the perch. Report at Institute of Freshwater Research, SE.
Begg GA, Weidman CR (2001) Stable δ13C and δ18O isotopes in otoliths of haddock, Melanogrammus aeglefinus, from the northwest ocean. Mar Ecol Prog Ser 216: 223-233. Bergman E (1987) Temperature-dependent differences in foraging ability of two percids, Perca fluviatilis and Gymnocephalus cernuus. Environ Biol Fishes 19(1): 45-53. Bernotas E (2002) Changes in fish biomass under impact of a thermal effluent and eutrophication in Lake Drūkšiai. Acta Zool Litu 12(3): 242-253. Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Amer Zool 11(1): 99-113. Brown ME (1946) The growth of brown trout (Salmo trutta) III. The effect of temperature on the growth of two-year-old trout. J Exp Biol 22(3-4): 145-155. Casselman JM (1990) Growth and relative size of calcified structures of fish. Trans Am Fish Soc 119(4): 673-688. Cairns JJ (1971) Thermal pollution: a cause for concern. J Water Pollut Control Fed 43(1): 55-66. Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42: 1014-1032 Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188: 263-297. Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59(2): 197-242. Ceccuzzi P, Terova G, Brambilla F, Antonini M, Saroglia M (2011) Growth, diet, and reproduction of Eurasian perch Perca fluviatilis in Lake Varese, northwestern Italy. Fish Sci 77(4): 533-545. Cooke SJ, Schreer JF (2003) Environmental monitoring using physiological telemetry- a case study examining common carp responses to thermal pollution in a coal-fired generating station effluent. Water Air Soil Pollut 142: 113-136. Cooke SJ, Bunt CM, Schreer JF (2004) Understanding fish behavior, distribution, and survival in thermal effluents using fixed telemetry arrays: a case study of smallmouth bass in a discharge canal during winter. Environ Manage 33(1): 140-150. DeNiro MJ, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197(4300): 261-263. Deutsch B, Berth U (2006) Differentiation of western and eastern Baltic Sea cod stocks (Gadus morhua) by means of stable isotope ratios in muscles and otoliths. J Appl Ichthyol 22: 538-539. Dimante-Deimantovicaa I, Skutea A, Skutea R (2012) Vertical variability of pelagic zooplankton fauna in deep Latvian lakes, with some notes on changes in ecological conditions. Est J Ecol 61(4): 247-264. Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS (2008) Cold shock and fish. J Fish Biol 73: 1491-1530. Dufour E, Gerdeaux D, Wurster CM (2007) Whitefish (Coregonus lavaretus) respiration rate governs intra-otolith variation of δ13C values in Lake Annecy. Can J Fish Aquat Sci 64(12): 1736-1746. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4(5): 213-224. Fischer P (1999) Otolith structure during the pelagic, settlement and benthic phases in burbot. J Fish Biol 54(6): 1231-1243. Foster JR, Wheaton TJ (1981) Losses of juvenile and adult fishes at the Nanticoke Thermal Generating Station due to entrapment, impingement, and entrainment. J Great Lakes Res 7(2): 162-170. Francis RICC (1990) Back-calculation of fish length: a critical review. J Fish Biol 36(6): 883-902. Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleisher M, Chap KK (eds) Data of geochemistry, 6th edn. US Geol Surv Prof Pap 440: 1-12. Fry B (1988) Food web structure on Georges Bank from stable C, N and S isotopic composition. Limnol Oceanogr 33(5): 1182-1189. Gailiušis B (1997) Thermal regime and water balance of Lake Drūkšiai and characteristics of rivers’flow in NP region. Collection of Scientific Reports of the State scientific program Ignalina Nuclear Power Plant and the Environment, LT. Gauldie RW (1996) Biological factors controlling the carbon isotope record in fish otoliths: principles and evidence. Comp Biochem Physiol B Biochem Mol Biol 115(2): 201-208. Gibbons JW, Sharitz RR (1981) Thermal ecology: environmental teachings of a nuclear reactor site. BioScience 31(4): 293-298. Gilliers C, Le Pape O, De¢saunay Y, Morin J, Gue¢rault D, Amara R (2006) Are growth and density quantitative indicators of essential fish habitat quality? An application to the common sole Solea solea nursery grounds. Estuar Coast Shelf Sci 69(1): 96-106. Godiksen JA, Power M, Borgstrom R, Dempson JB, Svenning MA (2012) Thermal habitat use and juvenile growth of Svalbard Arctic charr: evidence from otolith stable oxygen isotope analyses. Ecol Freshw Fish 21(1): 134-144. Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Isot Geosci 59: 59-74. Guiguer KRRA, Drimmie R, Power M (2003) Validating methods for measuring δ18O and δ13C in otoliths from freshwater fish. Rapid Commun Mass Spectrom 17(5): 463-471. Hayes FR, Pelluet D (1945) The effect of temperature on the growth and efficiency of yolk conversion in the salmon embryo. Can J Res 23(2): 7-15. Heibo E, Magnhagen C, Vollestad LA (2005) Latitudinal variation in life-history traits in Eurasian perch. Ecology 86(12): 3377-3386. Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology. Wiley-Blackwell, Oxford. Henderson PA (2010) Comments on aquatic issues relating to the proposed New Nuclear Darlington (NND) power plants. Report of Pisces Conservation, UK. Hjelm J, Persson L, Christensen B (2000) Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oecologia 122(2): 190-199. Hufthammer AK, Hoie H, Folkvord A, Geffen AJ, Andersson C, Ninnemann US (2010) Seasonality of human site occupation based on stable oxygen isotope ratios of cod otoliths. J Archaeol Sci 37(1): 78-83. Hoie H, Folkvord A, Otterlei E (2003) Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua) otoliths. J Exp Mar Bio Ecol 289(1): 41-58. Hoie H, Andersson C, Folkvord A, Karlsen O (2004a) Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Mar Biol 144: 1039-1049. Hoie H, Otterlei E, Folkvord A (2004b) Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua). ICES J Mar Sci 61(2): 243-251. Hokanson KEF (1977) Temperature requirements of some percids and adaptations to the seasonal temperature cycle. J Fish Res Board Can 34: 1524-1550. Holmgren K, Appelberg M (2001) Effects of environmental factors on size‐related growth efficiency of perch, Perca fluviatilis. Ecol Freshw Fish 10(4): 247-256. Hussy K, Mosegaard H, Jessen F (2004) Effect of age and temperature on amino acid composition and the content of different protein types of juvenile Atlantic cod (Gadus morhua) otoliths. Can J Fish Aquat Sci 61(6): 1012-1020. ILEC. World Lake Database: Lake Druksiai. Retrieved June 5, 2013, from http://www. ilec.or.jp/en/ Imsland AK, Foss A, Sparboe LO, Sigurdsson S (2006) The effect of temperature and fish size on growth and food efficiency ratio of juvenile spotted wolffish. J Fish Biol 68: 1107-1122. Jachner A (1991) Food and habitat partitioning among juveniles of three fish species in the pelagial of a mesotrophic lake. Hydrobiologia 226(2): 81-89. Jobling M (2002) Environmental factors and rates of development and growth. Handbook of fish biology and fisheries I: 97-122. Blackwell, London, UK. Jonassen TM, Imsland AK, Stefansson SO (1999) The interaction of temperature and size on growth of juvenile Atlantic halibut. J Fish Biol 54(3): 556-572. Kalish JM (1991) 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar Ecol Prog Ser 75:191-203. Kahl U, Radke RJ (2006) Habitat and food resource use of perch and roach in a deep mesotrophic reservoir: enough space to avoid competition?. Ecol Freshw Fish 15(1): 48-56. Kelso JR, Milburn GS (1979) Entrainment and impingement of fish by power plants in the Great Lakes which use the once-through cooling process. J Great Lakes Res 5(2): 182-194. Kerr LA, Secor DH, Kraus RT (2007) Stable isotope (13C and 18O) and Sr/Ca composition of otoliths as proxies for environmental salinity experienced by an estuarine fish. Mar Ecol Prog Ser 349: 245-253. Kesminas V, Olechnovičienė J (2008) Fish community changes in the cooler of the Ignalina Nuclear Power Plant. Ekologija 54(2): 124-131. Kinne O (1963) The effects of temperature and salinity on marine and brackish water animals. 1. Temperature. Oceanogr Mar Biol Ann Rev 1: 301-340. Kokorite I, Jankevica M, Klavins M (2012) Assessment of anthropogenic pressure on lake ecosystems in Latvia by using analysis of lake sediments. Paper presented at Conference on Water Observation and Information System for decision Support (BALWOIS), Ohrid, MK. Kudrinskaya OM (1970) Food and temperature as factors affecting the growth, development and survival of pike-perch and perch larvae. J Ichthyol 10: 779-788. Jones CM (1986) Determining age of larval fish with the otolith increment technique. Fish Bull 84: 91-103. Le Cren ED (1958) Observations on the growth of perch (Perca fluviatilis) over twenty-two years with special reference to the effects of temperature and changes in population density. J Anim Ecol 27(2): 287-334. Leggett MF, Servos MR, Hesslein R, Johannsson O, Millard ES, Dixon DG (1999) Biogeochemical influences on the carbon isotope signatures of Lake Ontario biota. Can J Fish Aquat Sci 56(11): 2211-2218. Lehtonen H (1996) Potential effects of global warming on northern European freshwater fish and fisheries. Fish Manag Ecol 3(1): 59-71. Lin YJ, Ložys L, Shiao JC, Iizuka Y, Tzeng WN (2007) Growth differences between naturally recruited and stocked European eel Anguilla anguilla from different habitats in Lithuania. J Fish Biol 71(6): 1773-1787. Lukšienė D, Sandstrom O, Lounasheimo L, Andersson J (2000) The effects of thermal effluent exposure on the gametogenesis of female fish. J Fish Biol 56(1): 37-50. Mažeika J, Taminskas J, Paškauska R, Bodoyan A, Baghdassaryan H, Tozalakyan P, Davtyan V, Grillot JC, Travi Y (2006) Ecohydrological evolution in the catchment of Lake Drūkšiai, Lithuania, under anthropogenic pressure. Ekologija 4: 40-50. McConnaughey TA, Burdett J, Whelan, JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61(3): 611-622. McCullough DA, Bartholow JM, Jager HI, Beschta RL, Cheslak EF, Deas ML, Ebersole JL, Foott JS, Johnson SL, Marine KR, Mesa MG, Petersen JH, Souchon Y, Tiffan KF, Wurtsbaugh WA (2009). Research in Thermal Biology: Burning Questions for Coldwater Stream Fishes. Rev Fish Sci 17(1):90-115. Meng L, Gray C, Taplin B, Kupcha E (2000) Using winter flounder growth rates to assess habitat quality in Rhode Island's coastal lagoons. Mar Ecol Prog Ser 201: 287-299. Meyer-Rochow VB, Cook I, Hendy CH (1992) How to obtain clues from the otoliths of an adult fish about the aquatic environment it has been in as a larva. Comp Biochem Physiol A Physiol 103(2): 333-335. Morita K, Matsuishi T (2001) A new model of growth back-calculation incorporating age effect based on otoliths. Can J Fish Aquat Sci 58: 1805-1811. Mugiya Y (1965) Calcification in fish and shell-fish: IV. The differences in nitrogen content between the translucent and opaque zones of otolith in some fish. Bull Jpn Soc Sci Fish 31(11): 896-901. Naylor E (1965) Effects of heated effluents upon marine and estuarine organisms. Adv Mar Bio 3: 63-103. Nelson CS, Northcote TG, Hendy CH (1989) Potential use of oxygen and carbon isotopic composition of otoliths to identify migratory and non‐migratory stocks of the New Zealand common smelt: A pilot study. N Z J Mar Freshwater Res 23(3): 337-344. Neuman E (1983) Thermal discharge and fish fauna in Sweden. Water Sci Technol 15: 67-87. Oana S, Deevey ES (1960) Carbon 13 in lake waters and its possible bearing on paleolimnology. Am J Sci 258: 253-272. Patterson WP, Smith GR, Lohmann KC (1993) Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. Geoph Monog Series 78: 191-202. Patterson WP (1999) Oldest isotopically characterized fish otoliths provide insight to Jurassic continental climate of Europe. Geology 27: 199-202. Pernaravičiūtė B (2004) The impact of climate change on thermal regime of Lithuanian lakes. Ekologija 2: 58-63. Persson L (1983) Food-consumption and the significance of detritus and algae to intraspecific competition in roach Rutilus rutilus in a shallow eutrophic lake. Oikos 41: 118-125. Persson L, Greenberg LA (1990) Interspecific and intraspecific size class competition affecting resource use and growth of perch, Perca fluviatilis. Oikos 59: 97-106. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18: 293-320. Pruell RJ, Taplin BK, Karr JD (2010) Stable carbon and oxygen isotope ratios of otoliths differentiate juvenile winter flounder (Pseudopleuronectes americanus) habitats. Mar Freshw Res 61: 34-41. Quinn T, Esch GW, Hazen TC, Gibbons JW (1978) Long range movement and homing by largemouth bass (Micropterus salmoides) in a thermally altered reservoir. Copeia 1978(3): 542-545. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geoph Monog Series 78: 1-36. Sandstrom O, Neuman E, Thoresson G (1995) Effects of temperature on life history variables in perch.J Fish Biol 47(4): 652-670. Sandstrom O, Abrahamsson I, Andersson J, Vetemaa M (1997) Temperature effects on spawning and egg development in Eurasian perch. J Fish Biol 51(5): 1015-1024. Schelske CL, Hodell DA (1995) Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr 40(5): 918-929. Schwarcz HP, Gao Y, Campana S, Browne D, Knyf M, Brand U (1998) Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55(8): 1798-1806. Searcy SP, Eggleston DB, Hare JA (2007) Is growth a reliable indicator of habitat quality and essential fish habitat for a juvenile estuarine fish? Can J Fish Aquat Sci 64(4): 681-691. Secor DH, Dean JM (1989) Somatic growth effects on the otolith-fish size relationship in young pond-reared striped bass, Morone saxatilis. Can J Fish Aquat Sci 46: 113-121. Sherwood GD, Rose GA (2003) Influence of swimming form on otolith δ13C in marine fish. Mar Ecol Prog Ser 258: 283-289. Shiao JC, Yui TF, Hoie H, Ninnemann U, Chang SK (2009) Otolith O and C stable isotope composition of southern bluefin tuna Thunnus maccoyii (Pisces: Scombridae) as possible environmental and physiological indicators. Zool Stud 48(1): 71-82. Siegenthaler U, Oeschger H (1980) Correlation of 18O in precipitation with temperature and altitude. Nature 285: 314-317. Sirois P, Lecomte, Dodson JJ (1998) An otolith-based back-calculation method to account for time-varying growth rate in rainbow smelt (Osmerus mordax) larvae. Can J Fish Aquat Sci 55: 2662-2671. Skov C, Brodersen J, Nilsson PA, Hansson LA, Bronmark C (2008) Inter‐and size‐specific patterns of fish seasonal migration between a shallow lake and its streams. Ecol Freshw Fish 17(3): 406-415. Smythe AG, Sawyko PM (2000) Field and laboratory evaluations of the effects of ‘cold shock’ on fish resident in and around a thermal discharge: an overview. Environ Sci Policy 3: 225-232. Souchon Y, Tissot L (2012) Synthesis of thermal tolerances of the common freshwater fish species in large Western Europe rivers. Knowl Manag Aquat Ecosyst 405 (3). Spigarelli SA, Thommes MM, Prepejchal W (1982) Feeding, growth, and fat deposition by brown trout in constant and fluctuating temperatures. Trans Am Fish Soc 111(2): 199-209. Stewart MK, Taylor CB (1981) Environmental isotopes in New Zealand hydrology 1. Introduction: the role of oxygen-18, deuterium and tritium in hydrology. N Z J Sci 24: 295-311. Stocks J, Stewart J, Gray CA, West RJ (2011) Using otolith increment widths to infer spatial, temporal and gender variation in the growth of sand whiting Sillago ciliata. Fish Manag Ecol 18(2): 121-131. Sylvester JR (1972) Possible effect of thermal effluents on fish: a review. Environ Pollut 3: 205-215. Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining delta C-13 and delta 0-18 fractionation in aragonitic otohths of marine fish. Geochim Cosmochim Acta 61(14): 2909-2919. Thresher RE, Koslow JA, Morison AK, Smith DC (2007) Depth mediated reversal of the effect of climate change on the long-term growth rates of exploited marine fish. Proceedings of the National Academy of Sciences 104: 7461-7465, USA. Tohse H, Mugiya Y (2002) Diel variations in carbonate incorporation into otoliths in goldfish. J Fish Biol 61(1): 199-206. Tolonen A, Lappalainen J, Pulliainen E (2003) Seasonal growth and year class strength variations of perch near the northern limits of its distribution range. J Fish Biol 63(1): 176-186. Treasurer JW (1988) The distribution and growth of lacustrine 0+ perch, Perca fluviatilis. Environ Biol Fish 21: 37-44. Urho L (1996) Habitat shifts of perch larvae as survival strategy. Ann Zool Fennici 33(3): 329-340. Virbickas J, Virbickas T (2005) Results and prospects of the integrated long-term ecological research into Lake Drūkšiai. Acta Zool Litu 15(2): 195-198. Wang N, Eckmann R (1994a) Distribution of perch (Perca fluviatilis) during their first year of life in Lake Constance. Hydrobiologia 277(3): 135-143. Wang N, Eckmann R (1994b) Effects of temperature and food density on egg development, larval survival and growth of perch (Perca fluviatilis). Aquaculture 122(4): 323-333. Wang N, Appenzeller A (1998) Abundance, depth distribution, diet composition and growth of perch (Perca fluviatilis) and burbot (Lota lota) larvae and juveniles in the pelagic zone of Lake Constance. Ecol Freshw Fish 7(4): 176-183. Weidman CR, Millner R (2000) High-resolution stable isotope records from North Atlantic cod. Fish Res 46(1): 327-342. Wurster CM, Patterson WP (2001) Seasonal variation in stable oxygen and carbon isotope values recovered from modern lacustrine freshwater mollusks: paleoclimatological implications for sub-weekly temperature records. J Paleolimnol 26(2): 205-218. Wurster CM, Patterson WP (2003) Metabolic rate of late Holocene freshwater fish: evidence from 13C values of otoliths. Paleobiology 29(4): 492-505. Wurster CM, Patterson WP, Stewart DJ, Bowlby JN, Stewart TJ (2005) Thermal histories, stress, and metabolic rates of chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra-otolith stable isotope analyses. Can J Fish Aquat Sci 62(3): 700-713. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60441 | - |
dc.description.abstract | 立陶宛境內的Ignalina核能發電廠利用Lake Drūkšiai作為冷卻水來源,此湖泊長期(1984-2009)受到核電廠溫排水注入,使湖泊水溫上升,並造成湖泊中魚類群聚的改變。為檢視溫排水對河鱸(Perca fluviatilis)所造成的影響,本研究以魚類耳石為研究材料,透過耳石碳氧同位素組成分析及耳石輪紋回推體長,檢視Lake Drūkšiai中河鱸的生活史,並與不受溫排水影響湖泊(Lake Plateliai及Lake Sventes)中的河鱸生活史進行比較。耳石穩定性氧同位素結果顯示,河鱸幼魚時期主要棲息於高溫水域,至成魚階段則傾向停留在低溫水域,而溫排水注入所造成的水溫分布不均,則使在Lake Drūkšiai中的河鱸於成體之後,發展出不同的棲地使用策略;部分個體的活動範圍遠離受溫排水影響區域,僅經歷季節性的水溫變化,其餘個體則廣泛使用湖泊水域,並可能跨越受溫排水影響的加溫水域,因此在季節性水溫變化外,同時遭遇異常的水溫起伏。另一方面,穩定性碳同位素結果顯示,Lake Drūkšiai中河鱸的生理代謝亦出現異於其他湖泊中河鱸的變化趨勢。而由耳石輪紋進行河鱸體長回推的結果發現,Lake Drūkšiai與其他湖泊相比有較大體長,表示受溫排水影響的Lake Drūkšiai其棲地環境促進河鱸成長。綜合本研究結果,發現溫排水的注入造成Lake Drūkšiai中河鱸的棲地利用改變,不僅對魚體生理代謝造成影響,並且加速魚體成長。 | zh_TW |
dc.description.abstract | Lake Drūkšiai had been used as the cooling system of Ignalina Nuclear Power Plant (INPP) in Lithuania since 1984 to 2009, and the thermal discharge had altered the aquatic environment, where fish species diversity and community structure were also changed. In order to evaluate possible effects of thermal discharge on aquatic organisms, the life history of perch (Perca fluviatilis) in Lake Drūkšiai is examined by fish otolith microstructure and microchemistry. For comparison, perch from other nature lakes (Lake Plateliai and Lake Sventes) were also analyzed. Stable oxygen isotopic composition shows that perch larva and juvenile had spent a specific period of time staying in warm habitat, and went into cooler zone afterward. Furthermore, different strategy of habitat use is evaluated for perch adults; some individuals had stayed away from the main thermally affected area, and experienced seasonally water temperature changes only, though others had widely used the whole lake, including the main affected area, and went through obvious water temperature fluctuation. From stable carbon isotopic composition results, metabolic rates of perch were also changed by the thermal shift in Lake Drūkšiai. Moreover, back-calculated fish length shows that perch had better growth in Lake Drūkšiai than in natural lakes, which suggests the thermally changed lake had provided favorable conditions for perch growth. In this study, the effect of thermal discharge on perch is evaluated, and the results indicate that thermal discharge had indeed altered the life history of perch. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:18:16Z (GMT). No. of bitstreams: 1 ntu-102-R00241204-1.pdf: 3348643 bytes, checksum: 3a49bfa785d70dfea0b655a5a4b6309d (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iii 表目錄 vii 圖目錄 viii 一、前言 1 1.1 魚類生理生態與溫排水 1 1.2 Drūkšiai湖泊背景 2 1.3 耳石與魚類生活史 3 1.3.1 耳石穩定性同位素組成分析 3 1.3.2 耳石輪紋成長回推分析 4 1.4 研究目的 4 二、材料與方法 6 2.1 研究地點 6 2.2 湖泊環境 6 2.2.1 湖水穩定性同位素分析 6 2.2.2 湖水溫度 7 2.3 魚體樣本採集 7 2.4 耳石製備與分析 7 2.4.1 包埋與研磨 7 2.4.2 碳氧同位素分析 8 2.4.3 年輪與魚體體長回推分析 9 2.5 資料處理 9 三、結果 10 3.1 環境資料 10 3.1.1 湖泊水樣分析 10 3.1.2 湖泊水溫 10 3.2 Lake Drūkšiai 10 3.2.1 耳石年齡判讀 10 3.2.2 耳石穩定性氧同位素分析 11 3.2.3 耳石穩定性碳同位素分析 13 3.2.4 耳石成長回推分析 13 3.3 Lake Plateliai 14 3.3.1 耳石年齡判讀 14 3.3.2 耳石穩定性碳氧同位素分析 14 3.3.3 耳石成長回推分析 14 3.4 Lake Sventes 15 3.4.1 耳石年齡判讀 15 3.4.2 耳石穩定性碳氧同位素分析 15 3.4.3 耳石成長回推分析 15 3.5 綜合比較 16 3.5.1 耳石穩定性同位素分析 16 3.5.2 耳石成長回推分析 18 四、討論 19 4.1 以耳石穩定性同位素探討河鱸生活史 19 4.1.1 穩定性氧同位素 19 4.1.2 穩定性碳同位素 22 4.2 以耳石回推體長探討河鱸成長情形 24 4.3 核電廠溫排水與河鱸生活史 27 五、總結 30 參考文獻 31 | |
dc.language.iso | zh-TW | |
dc.title | 以耳石微細結構及穩定性同位素組成分析核電廠溫排水對於河鱸生活史的影響 | zh_TW |
dc.title | Impact of anthropogenic thermal stress on European perch (Perca fluviatilis) inferred by otolith microstructure and stable isotopic analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉信明,張至維,王佳惠 | |
dc.subject.keyword | 溫排水,耳石,生活史,穩定性同位素,成長回推, | zh_TW |
dc.subject.keyword | thermal discharge,otolith,life history,stable isotope,back-calculation, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。