請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60439完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡國龍(Kuo-Liong Chien) | |
| dc.contributor.author | Hui-Chun Huang | en |
| dc.contributor.author | 黃惠君 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:18:12Z | - |
| dc.date.available | 2021-07-01 | |
| dc.date.copyright | 2020-09-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-06 | |
| dc.identifier.citation | 1. Surawicz B, Childers R, Deal BJ, Gettes LS, Bailey JJ, Gorgels A, Hancock EW, Josephson M, Kligfield P, Kors JA, Macfarlane P, Mason JW, Mirvis DM, Okin P, Pahlm O, Rautaharju PM, van Herpen G, Wagner GS and Wellens H. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part III: intraventricular conduction disturbances: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009;53:976-81. 2. Francia P, Balla C, Paneni F and Volpe M. Left bundle-branch block—pathophysiology, prognosis, and clinical management. Clin Cardiol. 2007;30:110-115. 3. Hardarson T, ÁRnason A, ElÍAsson GJ, PÁLsson K, EyjÓLfsson K and SigfÚSson N. Left bundle branch block: prevalence, incidence, follow-up and outcome. Eur Heart J. 1987;8:1075-1079. 4. Nakamura Y, Okamura T, Inohara T, Kohsaka S, Watanabe M, Higashiyama A, Kadota A, Okuda N, Ohkubo T, Nagasawa SY, Miura K, Okayama A and Ueshima H. Prognostic values of bundle branch blocks for cardiovascular mortality in Japanese (24year follow-up of NIPPON DATA80). J Electrocardiol. 2013;46:360-5. 5. Sumner G, Salehian O, Yi Q, Healey J, Mathew J, Al-Merri K, Al-Nemer K, Mann JF, Dagenais G and Lonn E. The prognostic significance of bundle branch block in high-risk chronic stable vascular disease patients: a report from the HOPE trial. J Cardiovasc Electrophysiol. 2009;20:781-7. 6. Imanishi R, Seto S, Ichimaru S, Nakashima E, Yano K and Akahoshi M. Prognostic significance of incident complete left bundle branch block observed over a 40-year period. Am J Cardiol. 2006;98:644-8. 7. Baldasseroni S, Opasich C, Gorini M, Lucci D, Marchionni N, Marini M, Campana C, Perini G, Deorsola A, Masotti G, Tavazzi L and Maggioni AP. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J. 2002;143:398-405. 8. Bruch C, Stypmann J, Grude M, Gradaus R, Breithardt G and Wichter T. Left bundle branch block in chronic heart failure-impact on diastolic function, filling pressures, and B-type natriuretic peptide levels. J Am Soc Echocardiogr. 2006;19:95-101. 9. Nichols KJ, Van Tosh A, Siddiqi S, Chen J, Garcia EV, Palestro CJ and Reichek N. Gated myocardial perfusion SPECT asynchrony measurements in patients with left bundle branch block. Int J Cardiovasc Imaging. 2009;25:43-51. 10. Kirk JA and Kass DA. Cellular and Molecular Aspects of Dyssynchrony and Resynchronization. Card Electrophysiol Clin. 2015;7:585-97. 11. Littmann L and Symanski JD. Hemodynamic implications of left bundle branch block. J Electrocardiol. 2000;33 Suppl:115-21. 12. Mills KT, Xu Y, Zhang W, Bundy JD, Chen C-S, Kelly TN, Chen J and He J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015;88:950-957. 13. Sciarretta S, Pontremoli R, Rosei EA, Ambrosioni E, Costa V, Leonetti G, Pessina AC, Trimarco B, Francione V, Tocci G, Musumeci MB, De Siati L, Ferrucci A, Deferrari G and Volpe M. Independent association of ECG abnormalities with microalbuminuria and renal damage in hypertensive patients without overt cardiovascular disease: data from Italy-Developing Education and awareness on MicroAlbuminuria in patients with hypertensive Disease study. J Hypertens. 2009;27:410-417. 14. Mantovani A, Rigolon R, Turino T, Pichiri I, Falceri A, Rossi A, Temporelli PL, Bonapace S, Lippi G, Zoppini G, Bonora E, Byrne CD and Targher G. Association between decreasing estimated glomerular filtration rate and risk of cardiac conduction defects in patients with type 2 diabetes. Diabetes Metab. 2018;44:473-481. 15. Wong MCG, Kalman JM, Pedagogos E, Toussaint N, Vohra JK, Sparks PB, Sanders P, Kistler PM, Halloran K, Lee G, Joseph SA and Morton JB. Temporal distribution of arrhythmic events in chronic kidney disease: Highest incidence in the long interdialytic period. Heart Rhythm. 2015;12:2047-2055. 16. Shurmur SW, D'Elia JA, Gieason RE, Nesto RW, Desilva RA and Weinrauch LA. Cardiac Conduction Defects Associated with Aortic and Mitral Valve Calcification in Dialysis Patients. Ren Fail. 1990;12:103-107. 17. Umana E, Ahmed W and Alpert MA. Valvular and perivalvular abnormalities in end-stage renal disease. Am J Med Sci. 2003;325:237-42. 18. Chue CD, Edwards NC, Moody WE, Steeds RP, Townend JN and Ferro CJ. Serum phosphate is associated with left ventricular mass in patients with chronic kidney disease: a cardiac magnetic resonance study. Heart. 2012;98:219. 19. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L and Tavazzi L. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539-49. 20. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW and Feldman AM. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140-50. 21. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, Cleland J, Deharo JC, Delgado V, Elliott PM, Gorenek B, Israel CW, Leclercq C, Linde C, Mont L, Padeletti L, Sutton R, Vardas PE, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Kirchhof P, Blomstrom-Lundqvist C, Badano LP, Aliyev F, Bansch D, Baumgartner H, Bsata W, Buser P, Charron P, Daubert JC, Dobreanu D, Faerestrand S, Hasdai D, Hoes AW, Le Heuzey JY, Mavrakis H, McDonagh T, Merino JL, Nawar MM, Nielsen JC, Pieske B, Poposka L, Ruschitzka F, Tendera M, Van Gelder IC and Wilson CM. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34:2281-329. 22. Tracy CM, Epstein AE, Darbar D, Dimarco JP, Dunbar SB, Estes NA, 3rd, Ferguson TB, Jr., Hammill SC, Karasik PE, Link MS, Marine JE, Schoenfeld MH, Shanker AJ, Silka MJ, Stevenson LW, Stevenson WG and Varosy PD. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2012;60:1297-313. 23. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Ellestad M, Trupp RJ, Underwood J, Pickering F, Truex C, McAtee P and Messenger J. Cardiac resynchronization in chronic heart failure. The New England journal of medicine. 2002;346:1845-53. 24. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, van der Wall EE and Schalij MJ. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol. 2004;44:1834-40. 25. Delgado V and Bax JJ. Assessment of Systolic Dyssynchrony for Cardiac Resynchronization Therapy Is Clinically Useful. Circulation. 2011;123:640-655. 26. Sung RK and Foster E. Assessment of Systolic Dyssynchrony for Cardiac Resynchronization Therapy Is Not Clinically Useful. Circulation. 2011;123:656-662. 27. Shamim W, Francis DP, Yousufuddin M, Varney S, Pieopli MF, Anker SD and Coats AJ. Intraventricular conduction delay: a prognostic marker in chronic heart failure. Int J Cardiol. 1999;70:171-8. 28. Lecoq G, Leclercq C, Leray E, Crocq C, Alonso C, de Place C, Mabo P and Daubert C. Clinical and electrocardiographic predictors of a positive response to cardiac resynchronization therapy in advanced heart failure. Eur Heart J. 2005;26:1094-100. 29. Pitzalis MV, Iacoviello M, Romito R, Guida P, De Tommasi E, Luzzi G, Anaclerio M, Forleo C and Rizzon P. Ventricular asynchrony predicts a better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy. J Am Coll Cardiol. 2005;45:65-9. 30. Molhoek SG, L VANE, Bootsma M, Steendijk P, Van Der Wall EE and Schalij MJ. QRS duration and shortening to predict clinical response to cardiac resynchronization therapy in patients with end-stage heart failure. Pacing Clin Electrophysiol. 2004;27:308-13. 31. Poole JE, Singh JP and Birgersdotter-Green U. QRS Duration or QRS MorphologyWhat Really Matters in Cardiac Resynchronization Therapy? J Am Coll Cardiol. 2016;67:1104-1117. 32. Alonso C, Leclercq C, Victor F, Mansour H, de Place C, Pavin D, Carre F, Mabo P and Daubert JC. Electrocardiographic predictive factors of long-term clinical improvement with multisite biventricular pacing in advanced heart failure. Am J Cardiol. 1999;84:1417-21. 33. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham WT, Ghio S, Leclercq C, Bax JJ, Yu CM, Gorcsan J, 3rd, St John Sutton M, De Sutter J and Murillo J. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608-16. 34. Marcus GM, Rose E, Viloria EM, Schafer J, De Marco T, Saxon LA and Foster E. Septal to posterior wall motion delay fails to predict reverse remodeling or clinical improvement in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. 2005;46:2208-14. 35. Engels EB, Vegh EM, Van Deursen CJ, Vernooy K, Singh JP and Prinzen FW. T-wave area predicts response to cardiac resynchronization therapy in patients with left bundle branch block. J Cardiovasc Electrophysiol. 2015;26:176-83. 36. Acar B, Yi G, Hnatkova K and Malik M. Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. Med Biol Eng Comput. 1999;37:574-84. 37. Zabel M, Acar B, Klingenheben T, Franz MR, Hohnloser SH and Malik M. Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation. 2000;102:1252-7. 38. Zabel M, Malik M, Hnatkova K, Papademetriou V, Pittaras A, Fletcher RD and Franz MR. Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. Circulation. 2002;105:1066-70. 39. Huang HC, Lin LY, Yu HY and Ho YL. Risk stratification by T-wave morphology for cardiovascular mortality in patients with systolic heart failure. Europace. 2009;11:1522-8. 40. Poulikakos D, Banerjee D and Malik M. Major arrhythmic events and T wave morphology descriptors in hemodialyzed patients. J Electrocardiol. 2014;47:240-3. 41. Iuliano S, Fisher SG, Karasik PE, Fletcher RD and Singh SN. QRS duration and mortality in patients with congestive heart failure. Am Heart J. 2002;143:1085-1091. 42. Eriksson P, Hansson PO, Eriksson H and Dellborg M. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998;98:2494-500. 43. Lund LH, Braunschweig F, Benson L, Stahlberg M, Dahlstrom U and Linde C. Association between demographic, organizational, clinical, and socio-economic characteristics and underutilization of cardiac resynchronization therapy: results from the Swedish Heart Failure Registry. Eur J Heart Fail. 2017. 44. Raatikainen MJ, Arnar DO, Zeppenfeld K, Merino JL, Levya F, Hindriks G and Kuck KH. Statistics on the use of cardiac electronic devices and electrophysiological procedures in the European Society of Cardiology countries: 2014 report from the European Heart Rhythm Association. Europace. 2015;17 Suppl 1:i1-75. 45. Francia P, Balla C, Paneni F and Volpe M. Left bundle-branch block--pathophysiology, prognosis, and clinical management. Clinical cardiology. 2007;30:110-5. 46. Fahy GJ, Pinski SL, Miller DP, McCabe N, Pye C, Walsh MJ and Robinson K. Natural history of isolated bundle branch block. Am J Cardiol. 1996;77:1185-90. 47. Rodriguez-Manero M, Abu-Assi E, Lopez MJ, de Blas Abad P, Fernandez GG, Alcalde CC, Loureiro MS, Garcia-Seara J, Perez RC, Gonzalez-Juanatey JR and Grupo Barbanza i. Left bundle branch block in atrial fibrillation patients without heart failure. Int J Cardiol. 2013;168:5460-2. 48. Sumner G, Salehian O, Yi Q, Healey J, Mathew J, Al-Merri K, Al-Nemer K, Mann JFE, Dagenais G and Lonn EVA. The Prognostic Significance of Bundle Branch Block in High-Risk Chronic Stable Vascular Disease Patients: A Report from the HOPE Trial. J Cardiovasc Electrophysiol. 2009;20:781-787. 49. Zannad F, Huvelle E, Dickstein K, van Veldhuisen DJ, Stellbrink C, Køber L, Cazeau S, Ritter P, Maggioni AP, Ferrari R and Lechat P. Left bundle branch block as a risk factor for progression to heart failure. Eur J Heart Fail. 2007;9:7-14. 50. Schneider JF, Thomas HE, Jr., Sorlie P, Kreger BE, McNamara PM and Kannel WB. Comparative features of newly acquired left and right bundle branch block in the general population: the Framingham study. Am J Cardiol. 1981;47:931-40. 51. Witt CM, Wu G, Yang D, Hodge DO, Roger VL and Cha Y-M. Outcomes With Left Bundle Branch Block and Mildly to Moderately Reduced Left Ventricular Function. JACC: Heart Failure. 2016;4:897-903. 52. Savarese G and Lund LH. Global Public Health Burden of Heart Failure. Cardiac Failure Review. 2017;3:7-11. 53. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJV, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WHW, Tsai EJ and Wilkoff BL. 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-e239. 54. Ezekowitz JA, O'Meara E, McDonald MA, Abrams H, Chan M, Ducharme A, Giannetti N, Grzeslo A, Hamilton PG, Heckman GA, Howlett JG, Koshman SL, Lepage S, McKelvie RS, Moe GW, Rajda M, Swiggum E, Virani SA, Zieroth S, Al-Hesayen A, Cohen-Solal A, D'Astous M, De S, Estrella-Holder E, Fremes S, Green L, Haddad H, Harkness K, Hernandez AF, Kouz S, LeBlanc M-H, Masoudi FA, Ross HJ, Roussin A and Sussex B. 2017 Comprehensive Update of the Canadian Cardiovascular Society Guidelines for the Management of Heart Failure. Can J Cardiol. 33:1342-1433. 55. Strauss DG, Selvester RH and Wagner GS. Defining Left Bundle Branch Block in the Era of Cardiac Resynchronization Therapy. The American Journal of Cardiology. 2011;107:927-934. 56. Tsai MH, Hsu CY, Lin MY, Yen MF, Chen HH, Chiu YH and Hwang SJ. Incidence, Prevalence, and Duration of Chronic Kidney Disease in Taiwan: Results from a Community-Based Screening Program of 106,094 Individuals. Nephron. 2018;140:175-184. 57. Sciarretta S, Pontremoli R, Rosei EA, Ambrosioni E, Costa V, Leonetti G, Pessina AC, Trimarco B, Francione V, Tocci G, Musumeci MB, De Siati L, Ferrucci A, Deferrari G and Volpe M. Independent association of ECG abnormalities with microalbuminuria and renal damage in hypertensive patients without overt cardiovascular disease: data from Italy-Developing Education and awareness on MicroAlbuminuria in patients with hypertensive Disease study. J Hypertens. 2009;27:410-7. 58. Wong MC, Kalman JM, Pedagogos E, Toussaint N, Vohra JK, Sparks PB, Sanders P, Kistler PM, Halloran K, Lee G, Joseph SA and Morton JB. Temporal distribution of arrhythmic events in chronic kidney disease: Highest incidence in the long interdialytic period. Heart Rhythm. 2015;12:2047-55. 59. Kottgen A, Russell SD, Loehr LR, Crainiceanu CM, Rosamond WD, Chang PP, Chambless LE and Coresh J. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18:1307-15. 60. Supariwala AA, Po JR, Mohareb S, Aslam F, Kaddaha F, Mian ZI, Chaudhry F, Otokiti A and Chaudhry FA. Prevalence and long-term prognosis of patients with complete bundle branch block (right or left bundle branch) with normal left ventricular ejection fraction referred for stress echocardiography. Echocardiography. 2015;32:483-9. 61. Witt CM, Wu G, Yang D, Hodge DO, Roger VL and Cha YM. Outcomes With Left Bundle Branch Block and Mildly to Moderately Reduced Left Ventricular Function. JACC Heart failure. 2016;4:897-903. 62. Huang HC, Chien KL, Lin HJ and Liu YB. The prevalence and association of patients with impaired left ventricular ejection fraction and complete left bundle-branch block in Taiwan. J Formos Med Assoc. 2019;118:686-691. 63. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F and Zeiher A. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787-847. 64. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH and van der Meer P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129-2200. 65. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I and et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2:358-67. 66. Li YH, Ueng KC, Jeng JS, Charng MJ, Lin TH, Chien KL, Wang CY, Chao TH, Liu PY, Su CH, Chien SC, Liou CW, Tang SC, Lee CC, Yu TY, Chen JW, Wu CC and Yeh HI. 2017 Taiwan lipid guidelines for high risk patients. J Formos Med Assoc. 2017;116:217-248. 67. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N and Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461-70. 68. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1-266. 69. Yu CM, Bleeker GB, Fung JW, Schalij MJ, Zhang Q, van der Wall EE, Chan YS, Kong SL and Bax JJ. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation. 2005;112:1580-6. 70. Ghaffari S, Rajabi N, Alizadeh A and Azarfarin R. Predictors of ventricular dysfunction and coronary artery disease in Iranian patients with left bundle branch block. Int J Cardiol. 2008;130:291-3. 71. Clark AL, Goode K and Cleland JG. The prevalence and incidence of left bundle branch block in ambulant patients with chronic heart failure. Eur J Heart Fail. 2008;10:696-702. 72. Shenkman HJ, Pampati V, Khandelwal AK, McKinnon J, Nori D, Kaatz S, Sandberg KR and McCullough PA. Congestive Heart Failure and QRS Duration: Establishing Prognosis Study. Chest. 2002;122:528-534. 73. Baldasseroni S, Opasich C, Gorini M, Lucci D, Marchionni N, Marini M, Campana C, Perini G, Deorsola A, Masotti G, Tavazzi L and Maggioni AP. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: A report from the Italian network on congestive heart failure. Am Heart J. 2002;143:398-405. 74. Guo Y, Lip GY and Banerjee A. Heart failure in East Asia. Curr Cardiol Rev. 2013;9:112-22. 75. Tseng CH. Clinical features of heart failure hospitalization in younger and elderly patients in Taiwan. Eur J Clin Invest. 2011;41:597-604. 76. Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG and Levy D. Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ Heart Fail. 2013;6:279-86. 77. Supariwala AA, Po JRF, Mohareb S, Aslam F, Kaddaha F, Mian ZI, Chaudhry F, Otokiti A and Chaudhry FA. Prevalence and Long-Term Prognosis of Patients with Complete Bundle Branch Block (Right or Left Bundle Branch) with Normal Left Ventricular Ejection Fraction Referred for Stress Echocardiography. Echocardiography. 2015;32:483-489. 78. van der Land V, Germans T, van Dijk J, Zwanenburg JJM, Spreeuwenberg M, Marcus JT, Kamp O, Götte MJW and van Rossum AC. The effect of left bundle branch block on left ventricular remodeling, dyssynchrony and deformation of the mitral valve apparatus: an observational cardiovascular magnetic resonance imaging study. The International Journal of Cardiovascular Imaging. 2007;23:529-536. 79. Rao HB, Krishnaswami R, Kalavakolanu S and Calambur N. Ventricular dyssynchrony patterns in left bundle branch block, with and without heart failure. Indian Pacing Electrophysiol J. 2010;10:115-21. 80. Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, Tu JV and Levy D. Relation of Disease Pathogenesis and Risk Factors to Heart Failure With Preserved or Reduced Ejection Fraction. Insights From the Framingham Heart Study of the National Heart, Lung, and Blood Institute. 2009;119:3070-3077. 81. Surkova E, Badano LP, Bellu R, Aruta P, Sambugaro F, Romeo G, Migliore F and Muraru D. Left bundle branch block: from cardiac mechanics to clinical and diagnostic challenges. EP Europace. 2017;19:1251-1271. 82. Galeotti L, van Dam PM, Loring Z, Chan D and Strauss DG. Evaluating strict and conventional left bundle branch block criteria using electrocardiographic simulations. Europace. 2013;15:1816-21. 83. Stewart S, Hart CL, Hole DJ and McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113:359-64. 84. Kotecha D and Piccini JP. Atrial fibrillation in heart failure: what should we do? Eur Heart J. 2015;36:3250-3257. 85. Baldasseroni S, De Biase L, Fresco C, Marchionni N, Marini M, Masotti G, Orsini G, Porcu M, Pozzar F, Scherillo M and Maggioni AP. Cumulative effect of complete left bundle-branch block and chronic atrial fibrillation on 1-year mortality and hospitalization in patients with congestive heart failure. A report from the Italian network on congestive heart failure (in-CHF database). Eur Heart J. 2002;23:1692-1698. 86. Shurmur SW, D'Elia JA, Gleason RE, Nesto RW, DeSilva RA and Weinrauch LA. Cardiac conduction defects associated with aortic and mitral valve calcification in dialysis patients. Ren Fail. 1990;12:103-7. 87. Izumaru K, Hata J, Nakano T, Nakashima Y, Nagata M, Fukuhara M, Oda Y, Kitazono T and Ninomiya T. Reduced Estimated GFR and Cardiac Remodeling: A Population-Based Autopsy Study. Am J Kidney Dis. 2019;74:373-381. 88. Szymanski MK, de Boer RA, Navis GJ, van Gilst WH and Hillege HL. Animal models of cardiorenal syndrome: a review. Heart Fail Rev. 2012;17:411-20. 89. Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, Garrigue S, Kappenberger L, Haywood GA, Santini M, Bailleul C and Daubert JC. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med. 2001;344:873-80. 90. Dewland TA, Soliman EZ, Davis BR, Magnani JW, Yamal JM, Piller LB, Haywood LJ, Alonso A, Albert CM and Marcus GM. Effect of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) on Conduction System Disease. JAMA internal medicine. 2016;176:1085-92. 91. Ku E, McCulloch CE, Vittinghoff E, Lin F and Johansen KL. Use of Antihypertensive Agents and Association With Risk of Adverse Outcomes in Chronic Kidney Disease: Focus on Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers. J Am Heart Assoc. 2018;7:e009992. 92. Hori M and Okamoto H. Heart rate as a target of treatment of chronic heart failure. J Cardiol. 2012;60:86-90. 93. van der Land V, Germans T, van Dijk J, Zwanenburg JJ, Spreeuwenberg M, Marcus JT, Kamp O, Gotte MJ and van Rossum AC. The effect of left bundle branch block on left ventricular remodeling, dyssynchrony and deformation of the mitral valve apparatus: an observational cardiovascular magnetic resonance imaging study. Int J Cardiovasc Imaging. 2007;23:529-36. 94. Maffessanti F, Wanten J, Potse M, Regoli F, Caputo ML, Conte G, Surder D, Illner A, Krause R, Moccetti T, Auricchio A and Prinzen FW. The relation between local repolarization and T-wave morphology in heart failure patients. Int J Cardiol. 2017;241:270-276. 95. Opthof T, Sutton P, Coronel R, Wright S, Kallis P and Taggart P. The Association of Abnormal Ventricular Wall Motion and Increased Dispersion of Repolarization in Humans is Independent of the Presence of Myocardial Infarction. Front Physiol. 2012;3:235. 96. Haugaa KH, Edvardsen T, Leren TP, Gran JM, Smiseth OA and Amlie JP. Left ventricular mechanical dispersion by tissue Doppler imaging: a novel approach for identifying high-risk individuals with long QT syndrome. Eur Heart J. 2009;30:330-7. 97. Sauer AJ, Selvaraj S, Aguilar FG, Martinez EE, Wilcox JE, Passman R, Goldberger JJ, Freed BH and Shah SJ. Relationship between repolarization heterogeneity and abnormal myocardial mechanics. Int J Cardiol. 2014;172:289-91. 98. Sauer A, Wilcox JE, Andrei AC, Passman R, Goldberger JJ and Shah SJ. Diastolic electromechanical coupling: association of the ECG T-peak to T-end interval with echocardiographic markers of diastolic dysfunction. Circulation Arrhythmia and electrophysiology. 2012;5:537-43. 99. Shah SJ, Aistrup GL, Gupta DK, O'Toole MJ, Nahhas AF, Schuster D, Chirayil N, Bassi N, Ramakrishna S, Beussink L, Misener S, Kane B, Wang D, Randolph B, Ito A, Wu M, Akintilo L, Mongkolrattanothai T, Reddy M, Kumar M, Arora R, Ng J and Wasserstrom JA. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure. Am J Physiol Heart Circ Physiol. 2014;306:H88-100. 100. Kessler EL, Boulaksil M, van Rijen HV, Vos MA and van Veen TA. Passive ventricular remodeling in cardiac disease: focus on heterogeneity. Front Physiol. 2014;5:482. 101. Orini M, Nanda A, Yates M, Di Salvo C, Roberts N, Lambiase PD and Taggart P. Mechano-electrical feedback in the clinical setting: Current perspectives. Prog Biophys Mol Biol. 2017;130:365-375. 102. Zabel M, Koller BS, Sachs F and Franz MR. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc Res. 1996;32:120-30. 103. Prenner SB, Shah SJ, Goldberger JJ and Sauer AJ. Repolarization Heterogeneity: Beyond the QT Interval. Journal of the American Heart Association. 2016;5. 104. Vegh EM, Engels EB, van Deursen CJ, Merkely B, Vernooy K, Singh JP and Prinzen FW. T-wave area as biomarker of clinical response to cardiac resynchronization therapy. Europace. 2016;18:1077-85. 105. Flore V, Bartunek J, Goethals M, Verstreken S, Timmermans W, De Pauw F, Van Bockstal K and Vanderheyden M. Electrical remodeling reflected by QRS and T vector changes following cardiac resynchronization therapy is related to survival in heart failure patients with left bundle branch block. J Electrocardiol. 2015;48:578-85. 106. Prenner SB, Swat SA, Ng J, Baldridge A and Wilcox JE. Parameters of repolarization heterogeneity are associated with myocardial recovery in acute heart failure. Int J Cardiol. 2020;301:147-151. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60439 | - |
| dc.description.abstract | 背景與目標:左支束傳導阻滯是由心電圖診斷出的一種心臟電氣傳導障礙,過去研究顯示此阻滯可能會引起不同步的心室收縮,進而導致心臟衰竭。目前發現慢性腎臟病也和心臟電氣傳導阻滯有關,更是造成心臟衰竭的重要因子。在合併心臟衰竭的左支束傳導阻滯病人中,使用心臟再同步治療可來改善病人存活率及生活品質,但是此項手術仍有相當比例的不反應者。在台灣,探討左支束傳導阻滯病人的盛行率及預後並未被詳細地研究。本研究的目標為: 探討(1)左支束傳導阻滯在各年齡層之間分布,與左心室射出分率的相關性; (2)了解左支束傳導阻滯且左心室射出分率正常病人的預後;(3) 慢性腎臟病對於左支束傳導阻滯病人的預後影響;(4)評估以T波型態分析法來預測心臟再同步治療反應率。 方法:本研究利用台大醫院資料庫找出在2010年到2013年中有164,049位病人做過心電圖檢查,我們找出其中心電圖為左支束傳導阻滯的病人,1) 分析左支束傳導阻滯在各年齡層的盛行率及和心室射出分率的相關性;另外針對規則於院內追蹤的左支束傳導阻滯病人,收集病患的過去病史、檢驗報告,心臟超音波報告及用藥情形,病例或電話追蹤病人的心臟衰竭住院發生情形及死亡率2) 再找出一組年紀,性別匹配且左心室射出分率正常的對照組比較; 3)分析慢性腎臟病對於左支束傳導阻滯病人預後的影響; 4)施行T波型態分析法,探討T波型態分析因子與收縮功能不全心臟衰竭的相關性及用來評估心臟再同步治療反應率的效用。 結果:在台灣,左支束傳導阻滯病人的盛行率為0.4%,其中有56%其左心室射出分率為正常。但是在左心室射出分率正常的病人,左支束傳導阻滯會有較高的心因性死亡,較高的心臟衰竭再住院率。慢性腎臟病是造成左支束傳導阻滯病人死亡的重要危險因子。利用T波型態分析法得出的T波型態因子來分析心臟再極化異質性,我們發現包括T波型態因子中可看出心臟再極化異質性越大,和收縮功能不全心臟衰竭(左心室射出分率<40%)有相關性,另外針對置放心臟再同步治療病人,心臟再極化異質性較大的病人也有較高的心臟再同步治療反應率。 結論:和國外資料相比,在台灣的左支束傳導阻滯病人有較高的比例其左心室射出分率為正常(左心室射出分率>50%),這可部分解釋為什麼在台灣置放心臟再同步治療的比例低於歐美國家。在左心室射出分率正常且無心房顫動病史的病人中,有左支束傳導阻滯病人仍有較高的心因性死亡,及心臟衰竭再住院率。慢性腎臟病是造成左支束傳導阻滯病人死亡的危險因子。利用T波型態分析法得出的T波型態因子來反應心臟再極化異質性,為偵測心臟再同步治療反應率的有效預測因子。 | zh_TW |
| dc.description.abstract | Background: Complete left bundle branch block (cLBBB), an electrical conduction abnormality, may harm the left ventricular (LV) mechanical synchrony and lead to heart failure. Chronic kidney disease (CKD) is a strong risk factor for heart failure and associated with conduction abnormality. Cardiac resynchronization therapy (CRT) improves survival of patients with cLBBB and systolic heart failure. Approximately 40% of recipients, however, do not show significant clinical responses. In Taiwan, the prevalence and prognosis in patients with cLBBB have not been properly investigated. Objectives of our study therefore, were (1) to estimate the prevalence of cLBBB in Taiwan; (2) to understand the impact of cLBBB on patients with normal left ventricle (LV) ejection fraction (EF); (3) to evaluate the risk of mortality associated with CKD in patients with cLBBB; (4) to evaluate the association between ventricular repolarization heterogeneity and LV systolic dysfunction using T-wave morphology analysis method and the prognostic value of T-wave morphology parameters in CRT response.
Method: We enrolled 164,049 patients who underwent a standard 12-lead electrocardiography (ECG) between January 2010 and December 2013 at the National Taiwan University Hospital, First, the prevalence of cLBBB was calculated. Adult patients with regular follow-up were included in the study. Baseline characteristics, blood serum reports, echocardiographic reports, and cardiovascular medication use were reviewed from the medical chart. Furthermore, events like heart failure admission and death were either reviewed from the medical chart or via phone. Next, we matched patients without conduction abnormalities and with normal LVEF according to age and sex. The risk of CKD in patients with cLBBB was subsequently evaluated, and a T-wave morphology analysis was also used to evaluate the association between T-wave morphology parameters and LVEF. Result: The prevalence of cLBBB was 0.4%, and 56% of patients had a normal EF. The rate of patients between the ages of 40 to 60 years with an EF of less than 35%, was 45%. Patients with cLBBB and normal EF, but without a history of atrial fibrillation, had a significantly higher risk of CV mortality, EF reduction to 40%, and admission for heart failure (HF). CKD is an independent risk factor for total mortality, while increased T-wave morphology parameters like T-wave morphology dispersion (TMD) and larger T-wave morphology residuum (TWR) were all associated with LVEF < 40%. A large TMD and high T-wave loop area (PL) were also independent predictors of the clinical CRT response outcome endpoint. Conclusion: Patients in Taiwan had a low prevalence of cLBBB and LVEF < 35%. This may partially explain the low implantation rate of CRT devices in patients with HF in Taiwan compared with western countries. In patients with normal EF and without a history of atrial fibrillation, the presence of cLBBB is an important risk factor for CV mortality and HF admission. CKD was an independent risk factor for total mortality in patients with cLBBB. Increases in repolarization heterogeneity in patients with cLBBB are associated with impaired LVEF and may be useful as additional predictors of response to CRT, and improving patient selection for CRT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:18:12Z (GMT). No. of bitstreams: 1 U0001-0607202015145000.pdf: 2527488 bytes, checksum: 777f55680d5ebc00b057b036aff18b75 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 致謝……………………………………………………………………………………i 中文摘要………………………………………………………………………………ii 英文摘要………………………………………………………………………………iv 縮寫對照表……………………………………………………………………………vi Chapter 1: Introduction 1.1 Background of complete left bundle branch block…………………………….....1 1.2 The pathogenesis of cLBBB…………………………………………………...…3 1.3 CKD and conduction abnormality ……..…………………………………..….....3 1.4 CRT therapy in patients with cLBBB and ventricular dysfunction….. ……..…...4 1.4.1 Predictors of CRT response…………………………………………..............5 1.5 Introduction of T-wave morphology analysis……………………………..............6 Chapter 2: Research hypothesis……………….…………………………………..…...9 Chapter 3: Methods and Materials 3.1 The prevalence of cLBBB in Taiwan …………………………………...…….…13 3.2 Clinical outcomes of cLBBB in patients with normal LVEF…………..….……..14 3.3 Risk of mortality in patients with cLBBB ……………………………...…..........17 3.4 T-wave morphology analysis in patients with cLBBB……………………...........20 Chapter 4: Results 4.1 The prevalence of cLBBB in Taiwan………………………………………….…24 4.1.1 Baseline characteristics, ECG parameters in patients with cLBBB………...24 4.2 Clinical outcomes of cLBBB in patients with normal LVEF……………..…..….25 4.2.1 Baseline characteristics………………………………………….…….…….25 4.2.2 Clinical outcomes of cLBBB in patients with normal LVEF…….…………..26 4.2.3 Risk of Reduced LVEF in patients with cLBBB…………….….……...........27 4.2.4 Subgroup analysis in the AF vs. non-AF group…………………......….…...27 4.3 Risk of mortality in patients with cLBBB……………….…………………….....28 4.3.1 Baseline clinical characteristics………………………………….…...….......28 4.3.2 Long-term survival in cLBBB patients with/without advanced CKD stage …..…………………………………………………………………….……..28 4.3.3 Risk Stratification by advanced CKD for total mortality in cLBBB…..........29 4.4 T-wave morphology analysis in patients with cLBBB……………………...........30 4.4.1Baseline clinical characteristics, ECG parameters, and T-wave morphologic descriptors ……………………………………………………………….....30 4.4.2 Associations between T-wave morphologic descriptors and reduced LVEF ………………………………………………………………………….........30 4.4.3 T-wave morphologic descriptors as predictors of echocardiographic CRT response…………………………………………………………………..…31 4.4.4 T-wave morphology descriptors as predictors of clinical outcome........……..31 Chapter 5 Discussion 5.1 The prevalence of cLBBB in Taiwan…………………………………….………32 5.1.1 Age effects on the LVEF in patients with LBBB…………………..……..…32 5.1.2 Low prevalence of cLBBB in patients with HF in Taiwan……………..…...32 5.1.3 Normal LVEF in patients with cLBBB…………………………………..….33 5.2. Clinical outcomes of cLBBB in patients with normal LVEF……………...........34 5.2.1 Clinical outcomes and survival among conventional cLBBB, strict-cLBBB and control group …………………………………………..………………….…...….34 5.2.2 Risk of Reduced LVEF in patients with LBBB…………………..........….....35 5.2.3 Clinical outcome in conventional LBBB patients with or without history of atrial fibrillation…………………..……………………………..................35 5.3 Risk of mortality in patients with LBBB………………………...…..……..…....36 5.3.1 CKD and conduction abnormality..………………………...….....……..…..36 5.3.2 The pathogenesis of CKD in patients with cLBBB…………………......…..37 5.3.3 Use of ACEI/ARB in patients with cLBBB……….……………………..….38 5.4 T-wave morphology analysis in patients with cLBBB……………….…….…..…39 5.4.1 Repolarization abnormalities in patients with cLBBB……………..……….39 5.4.2 Repolarization abnormalities and CRT response……………......………......41 5.5 Study limitations ……………………………………..….....………………..…..42 5.6 Conclusions……………………………………………………………………....44 Chapter 6: Perspectives Summary and Perspectives ………………………………………..……….…….........45 Reference …………………………………………………………….….…….….........48 Appendix …………………………………………………………………..……..…...101 | |
| dc.language.iso | en | |
| dc.subject | 左支束傳導阻滯 | zh_TW |
| dc.subject | 預後 | zh_TW |
| dc.subject | 慢性腎臟病 | zh_TW |
| dc.subject | T波型態分析 | zh_TW |
| dc.subject | 心臟再同步化治療 | zh_TW |
| dc.subject | T-wave morphology | en |
| dc.subject | outcome | en |
| dc.subject | chronic kidney disease | en |
| dc.subject | cardiac resynchronization therapy | en |
| dc.subject | left bundle branch block | en |
| dc.title | 左支束傳導阻滯病人的臨床預後及T波型態分析 | zh_TW |
| dc.title | Clinical Outcomes and T-wave Morphology Analysis in Patients with Left Bundle-Branch Block | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉言彬(Yen-Bin Liu),李文宗(Wen-Chung Lee),杜裕康(Yu-Kang Tu),季瑋珠(Wei-Chu Chie),陳文鍾(Wen-Jone Chen) | |
| dc.subject.keyword | 左支束傳導阻滯,預後,慢性腎臟病,T波型態分析,心臟再同步化治療, | zh_TW |
| dc.subject.keyword | left bundle branch block,outcome,chronic kidney disease,T-wave morphology,cardiac resynchronization therapy, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU202001338 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-08 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0607202015145000.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
