Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方煒
dc.contributor.authorYi-Kai Juanen
dc.contributor.author阮奕凱zh_TW
dc.date.accessioned2021-06-16T10:18:03Z-
dc.date.available2018-11-06
dc.date.copyright2013-11-06
dc.date.issued2013
dc.date.submitted2013-08-17
dc.identifier.citation1. 方煒。2011。話說植物工廠。農業推廣手冊67:2-3。台北:國立台灣大學生物資源暨農學院。
2. 大山克己,古在豐樹,久保田智惠利,全昶厚,長谷川智行,橫井真悟,西村將雄。2002。封閉型種苗生產系統中使用家用熱泵供冷時的成績係數。植物工廠學會誌14 (3):141-146。
3. 古在豐樹。2012。人工光型植物工廠。中文版初版,47,48,154,155,168-178。台北:財團法人豐年社。
4. 橫井真悟,古在豐樹,大山克己,長谷川智行,全昶厚,久保田智惠利。2003。封閉型苗生產系統中番茄實生各群體的葉面積指數對能源利用效率的影響。植物工廠學會誌 15 (4):231-238。
5. 哈洛德•馬基 (Harold McGee)。2009。食物與廚藝 [蔬•果•香料•穀物]。初版,106、107。台北:大家出版社。
6. 阮明淑。1996。園藝科技術語。初版,297,298,490,547。台北:農業科學資料服務中心。
7. Amaki, W., N. Yamazaki, M. Ichimura, and H. Watanabe, 2011. Effects of light quality on the growth and essential oil content in sweet basil. Acta Hort. 907:91-94.
8. Arora, C. P. 2009. Refrigeration and air conditioning, third edition. International edition.
9. American Society of Heating, Refrigerating, and Air-Conditioning Engineers. 1974. ASHRAE Handbook: Applications, Chapter 22. ASHRAE: Atlanta, CA.
10. Austin, A. L., and J. W. Brewer. 1971. World population growth and related technical problems. Technological forecasting and social change, 3, 23-49.
11. Baessler, C., and S. Klotz. 2006. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agriculture, Ecosystems and Environment. 115, 43-50.
12. Goto, E. 2011. Production of pharmaceutical materials using genetically modified plants grown under artificial lighting. Acta Hort. 907: 45-52.
13. Goto, E. 2012. Plant Production in a Closed Plant Factory with Artificial Lighting. Acta Hort. 956. 37-49.
14. Gilland, B. 2002. World population and food supply Can food production keep pace with population growth in the next half-century? Food Policy. 27: 47-63.
15. Braak, N. J., J. C. Bakker, G. P. A. Bot, H. Challa, and N. J. Braak van de. 1995. Greenhouse construction and equipment. Ch.6 in Greenhouse Climate Control; eds.
16. Buchholz, M., R. Buchholz, P. Jochum, G. Zaragoza, and J. Perez-Parra. 2006. Temperature and humidity control in the watergy greenhouse. Acta Hort. 719: 401-408.
17. Buckley, J. D., L. Robinson, R. Srwontinsky, D. H. Garabrant, M. Lebeau, P. Manchester, M. E. Nesbit, L. Odom, J. M. Peters, and W. G. Woods. 1989. Occupational exposures of parents of children with acute non-ly phocytic leukemia. Cancer Res. 49: 4030-4037.
18. Chou, S. K., K. J. Chua, J. C. Ho, C. L. Ooi. 2004. On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied Energy. 77: 355-373.
19. Cockshull, K. E. 1992. Crop environments. Acta Horticulturae. 312: 7-85.
20. Daniels, J. L., A. F. Olshan, and D. A. Savitz. 1997. Pesticides and childhood cancers. Environ. Health Perspect. 105: 1068-1077.
21. Demers, D.A., J. Charbonneau, and A. Gosselin. 1990. Effects de l’eclairage d’appoint sur la croissance et la productivite du poivron cultive en serre. Can. J. Plant Sci. 71: 587-594.
22. Dorais, M., A. Gosselin, and M. J. Trudel. 1990. Annual greenhouse tomato production under a sequential intercropping system using supplemental light. Scientia Hort. 45: 225-234.
23. Dougher, T., and B. Bugbee. 2001. Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Photochem. Photobiol. 73: 199–207.
24. Gaudreau, L., and J. Charbonneau. 1994. Photoperiod and photosynthetic photon flux influence growth and quality of greenhouse-grown lettuce. J.Amer. Soc. Hort. Sci. 29(11): 1285-1289.
25. Glenn, E.P. 1984. Seasonal effects of radiation and temperature on growth of greenhouse lettuce in a high insolation desert environment. Scientia Hort. 22: 9-21.
26. Greaves, M. P. 1982. Effect of pesticides on soil microorganisms. In: Burns RG, Slater JH (eds) Experimental microbial ecology. Blackwell, Oxford. 613–630.
27. Hanan, J. J., W. L. Holley, and K. L. Goldberry. 1978. Greenhouse management. Advantages Series in Agricultural Sciences, Vol.5. Springer-Verlag, Berlin.
28. Hashimoto, Y., and M. Takatsuzi. 1984. The significances and technical problems of vegetable factory. The Heredity (in Japanese). 38: 4-8.
29. Hashimoto, Y., Y. Yi., F. Nyunoya., Y. Anzai., H. Yamazaki., S. Nakayama, and A. Ikeda. 1987. Vegetable growth as affected by on-off light intensity developed for vegetable factory. Acta Horticulturae. (Biological Aspects of Energy Saving in Protected Cultivation) (in press)

30. Heo, J., C. Lee, D. Chakrabarty, and K. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regulat. 38: 225–230.
31. Ikeda, A., K. Esaki., Y. Kawai, and S. Nakayama. 1987. Plant growth characteristics under omnidirectional illumination. Environ. Control in Biol. 25: 1-5. (in Japanese with English summary)
32. Ikeda, A., and S. Nakayama. 1987. Plant growth characteristics under all direction illumination (2). Environ. Control in Biol. (in Japanese) 25: 1-5.
33. Inden, H., Y. Akamatsu, and T. Matsuda. 2011. Low cost plant factory using hybrid electrode fluorescent lamp (HTFL). Acta Hort. (ISHS) 907: 157-160.
34. Ioslovich, I., and P. O. Gutman. 2000. Optimal control of crop spacing in a plant factory. Automatica. 36: 1665-1668.
35. Jeyaratnam, J. 1990. Acute pesticide poisoning: A major global health problem. World health statistics quarterly. 43(3): 139-144.
36. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 75:128-133.
37. Johnsen, K., C. S. Jacobsen, and V. Torsvik. Pesticide effects on bacterial diversity in agricultural soils – a review. Biol Fertil Soils. 33: 443-453.
38. Jolliet, O., and B. J. Bailey. 1992. The effect of climate on tomato transpiration in greenhouses: measurements and models comparison. Agricultural and Forest Meteorology. 58: 43-62.
39. Jolliet, O., B. J. Bailey, and K. Cockshull. 1993. Tomato yield in greenhouses related to humidity and transpiration. Acta Horticulture. 328: 115-124.
40. Kitaya, Y., T. Imanaka, M. Kiyota, and I. Aiga. 1988. Advantageous arrangement of plants in a plant factory – cultivation of lettuce suspended upside down. Acta Hort. (ISHS) 230: 271-278.
41. Kozai, T., K. Ohyama, Y. Tong, P. Tongbai, and N. Nishioka. 2009. Integrative Environment Control using Heat Pumps for Reductions in Energy Consumption and CO2 Gas Emission, Humidity Control and Air Circulation, International ISHS Symposium (GreenSys2009), Quebec, Canada, Acta Horticulturae.
42. Kurata, K., T. Nagano. and T. Takakura. 1984. Effects of fluctunating light on photosynthesis of some vegetables. J. Agr. Met. 40: 269-272.
43. Landsberg, J. J. 1975. Temperature effects and plant responses. In: Progress in Plant Biometerology (Smith L P ed.). Sweets and Zeittinger. (in Amsterdam) 86-107.
44. Leiss, J. K., and D. A. Savitz. 1995. Home pesticide use and childhood cancer: A case-control study. Am. J. Public Health. 85: 250-252.
45. Loewengart, R. A., J. M. Peters, C. Cicioni, J. Buckley, L. Bernstein, S. Preston-Martin, and E. Rappaport. 1987. Childhood leukemia and parents’ occupational and home exposures. J. Natl. Cancer Inst. 79: 39-46.
46. Lutzenhiser, L. 1992. A question of control: alternative patterns of room air-conditioner use. Energy and Buildings, 18: 193-200.
47. Lynch, M. R. 1995. Procedures for assessing the environmental fate and ecotoxicity of pesticides. Society of Environmental Toxicology and Chemistry Brussels, Belgium.
48. Massa, G. D., H. H. Kim, and R. M. Wheeler. 2008. Plant productivity in response to LED lighting. HortScience. 43(7): 1951-1956.
49. Morrow, R. C. 2008. LED lighting in horticulture. HortScience. 43(7): 1947-1950.
50. O’Leary, L. M., A. M. Hicks, J. M. Peters, and S. London. 1991. Parental occupational exposures and risk of childhood cancer: A review. Am. J. Ind. Med. 20: 17-35.
51. Opdam, J. J. G., G. G. Schoonderbeek, and E. M. B. Heller. 2005. Closed greenhouse: a starting point for sustainable entrepreneurship in horticulture. Acta Hort. 691: 517-524.
52. Ozgener, O., and A. Hepbasli. 2005. Experimental investigation of the performance of a solar-assisted ground-source heat pump system for greenhouse heating. Int. J. Energy Res. 29: 217-231.
53. Park, Y. C., Y. C. Kim, and M. K. Min. 2001. Performance analysis on a multi-type inverter air conditioner. Energy conversion and Management. 42: 1607-1621.
54. Peterson, U., and R. Aunap. 1998. Changes in agricultural land use in Estonia in the 1990s detected with multitemporal Landsat MSS imagery. Landscape and Urban Planning. 41: 193-201.
55. Pereira, H. C. 1993. Food production and population growth. Land Use Policy. July: 187-190.
56. Pimentel, D., and M. Pimentel. 2008. Human Population Growth. Ecological Engineering. 1907-1912.
57. Pimputkar, S., J. S. Speck, S. P. DenBaars, and S. Nakamura. 2009. Prospects for LED lighting. Nature Photon. 3: 180-182.
58. Plant Factory Association of Japan. Plant Factory Seminar. Chiba: 2012.
59. Qin, Y. X., D. Y. Lin, and S. Y. R. Hui. 2009. A simple method for comparative study on the thermal performance of light emitting diodes (LED) and Fluorescent Lamps. Applied Power Electronics Conference and Exposition. doi: 10. 1109/APEC. 4802614.
60. Sami, S. M., and P. J. Tulej. 1994. A new design for an air-source heat pump using a ternary mixture for cold climates. Heat recovery systems and CHP. 15(6): 521-529.
61. Sager, J., J. Edwards, and W. Klein. 1982. Light energy utilization efficiency for photosynthesis. Trans. ASAE 25: 1737–1746.
62. Savitz, D. A., and J. Chen. 1990. Parental occupational and childhood cancer: A review of epidemiologic studies. Environ. Health Perspect. 88: 325-337.
63. Schuerger, A., and J. Richards. 2006. Effects of artificial lighting on the detection of plant stress with spectral reflectance remote sensing in bioregenerative life support systems. Intl. J. Astrobiology. 5:151–169.
64. Shoji, K., E. Goto, S. Hashida, F. Goto, and T. Yoshihara. 2011. Effect of light quality on the polyphenol content and antioxidant activity of sweet basil (Ocimum basilicum L.). Acta Hort. 907:95-99.
65. Steele, R. V. 2007. The story of a new light source. Nature Photon. 1: 25-26.
66. Shu, X. O., Y. T. Gao, L. A. Brinton, M. S. Linet, J. T. Tu, W. Zheng, and J. F. J. Fraumeni. 1988. A population-based case-control study of childhood leukemia in Shanghai. Cancer 62: 635-643.
67. Sulfstede, L. E. 1993. Applying power electronics to residential HVAC – The Issues. IEEE Trans Ind Appl, 29(2): 300-5.
68. Takatsuji, M. 1986. Yasai kojyo (Vegetable factory), Maruzen. (in Japanese)
69. Watanabe, H. 2011. Light-controlled plant cultivation system in Japan - development of a vegetable factory using LEDs as a light source for plants. Acta Hort. 907:37-44.
70. Yang, S. H., and J. Y. Rhee. 2013. Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating. Applied energy. 105: 244-251.
71. Ye, G., C. Yang., Y. Chen, and Y. Li. 2003. A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET). Build Environ. 38: 33-44.
72. You, Z., X. Zhang., C. H. Chen, K. Ono, H. Hibino, and S. Koyama. 2013. Impact of Relevant Knowledge on Purchase Intention of Plant-factory-produced Plants. FMFI. 2 (2): 63-69.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60433-
dc.description.abstract完全人工光型植物工廠內進行植物栽培不會受到天候的影響,然而,其較高的能源消耗是植物工廠目前未普及全球的主因之一。本研究旨在量化植物工廠內的總能源消耗與節水效益,找出影響能源消耗的各項因素進而進行分析,促使運轉成本透明化。
本研究定義燈管與空調耗能的比為能源消耗比 (Power Consumption Ratio,PCR),使用PCR來量化植物工廠內的能源使用效率並由整年之運作數據求出各PCR值,再分別探討變頻與非變頻空調在不同燈光能耗與不同室外溫度時,全天、日間與夜間的空調能耗差異,進而分析室內外溫度差對PCR之影響。由裝設相同燈光與空調設備的植物工廠之PCR比較可看出其隔熱的良好與否,藉由PCR也可以計算出不同系統下之能源耗電差異。
一般而言,變頻冷氣栽培室之能源消耗比值會明顯較高,換言之,空調耗電較少。非變頻冷氣栽培室之PCR較為穩定 (R2 = 0.758~0.942),而熱泵系統栽培室之PCR於室外溫度10至30℃區間,其平均值幾乎保持在一定範圍內 (PCR變動小於0.5)。在相同燈光用電的條件下,冷凝水收集量以變頻空調冷氣栽培室較熱泵系統栽培室大,栽培室內的濕度也是後者較高,這與兩者的工作流體分別為冷媒與冰水有關。建置植物工廠時,於熱帶地區使用熱泵系統,於其它地區使用變頻空調系統可有較佳的空調利用效率。
zh_TW
dc.description.abstractVegetables which grow in Plant factory with only artificial light won’t be affected by the weather; however, the high energy cost of it is one of the main reason why the plant factory doesn’t widespread around the world. Our research quantifies the total energy cost and benefit of saving water. We want to promote transparency in operating cost through analyzing various factors which affect the energy cost.
This paper defines the ratio of tubes cost (kWh) and air conditioning cost (kWh) as PCR (Power Consumption Ratio). We use the whole year data to calculate the PCR, and then use PCR to qualify the energy efficiency in plant factory. After that, we investigate the air conditioning cost at whole day, morning, and night on various air conditioning systems, and then analyze the relation between indoor/outdoor temperature and PCR. We can know which plant factory has the better insulation at the same light and air conditioning equipment by the analysis of PCR; furthermore, the different of energy cost can also get from the PCR.
In general, the PCR of inverter air conditioning is higher than non-inverter air conditioner, it means the cost of inverter air conditioner is lower than the non-inverter’s, which has stable PCR (R2 = 0.758~0.942). The PCR of heat pump system changes little (<0.5) within temperature of 10~30℃. The amount of condensated water in cultivation chamber which equips inverter air conditioner is much more than non-inverter’s cultivation chamber, and the humidity state is on the contrary, which causing by the different working fluids. The plant factory equips heat pump system in tropical regions and equips inverter air conditioning system in other regions will have high using efficiency of air conditioning.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:18:03Z (GMT). No. of bitstreams: 1
ntu-102-R00631029-1.pdf: 3905832 bytes, checksum: d06bc8caa3d6330684877243d9484c57 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝................................................................................................................................I
摘要...............................................................................................................................II
ABSTRACT.................................................................................................................III
目錄..............................................................................................................................V
圖目錄........................................................................................................................VII
表目錄.........................................................................................................................XI
第一章 前言及研究目的 1
1.1 前言 1
1.2 研究目的 1
第二章 文獻探討 3
2.1全球農業所面臨的挑戰 3
2.2植物工廠與其能源消耗 6
第三章 實驗設備與方法 17
3.1設備運轉原理介紹 17
3.2研究方法 19
3.3實驗設備之運轉架構 22
3.4分析流程 25
3.4.1 變頻、非變頻空調與熱泵系統 25
3.4.2 熱泵分析深入探討 29
3.5栽培室內所栽種之作物 30
3.6蒸散與水利用效率 30
3.6.1 蒸散 30
3.6.2 水利用效率 31
3.6.3 蒸發機冷凝水的利用 33
第四章 結果與討論 34
4.1 2011 & 2012 最冷與最熱比較 34
4.2 春天時各種空調系統之數據比較 45
4.3 夏天時各種空調系統之數據比較 55
4.4 秋天時各種空調系統之數據比較 68
4.5 冬天時各種空調系統之數據比較 80
4.6 全年各種空調系統之數據比較 92
4.7 冷凝水收集實驗 113
4.8 由PCR計算電費消耗 115
4.9 數據比較之總結 116
第五章 結論 121
參考文獻 124
dc.language.isozh-TW
dc.title多種空調系統於人工光型植物工廠之使用分析zh_TW
dc.titleAnalysis on Various Air Conditioning Systems in Plant Factory with Artificial Lighten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃振康,邱奕志
dc.subject.keyword植物工廠,變頻冷氣,非變頻冷氣,熱泵,能源消耗比,zh_TW
dc.subject.keywordplant factory,inverter air conditioner,non-inverter air conditioner,heat pump,Power Consumption Ratio,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2013-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved