Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明(Chung-Ming Chen)
dc.contributor.authorChia-Yun Hsuen
dc.contributor.author許嘉芸zh_TW
dc.date.accessioned2021-06-16T10:17:31Z-
dc.date.available2018-08-28
dc.date.copyright2013-08-28
dc.date.issued2013
dc.date.submitted2013-08-17
dc.identifier.citation[1] 行政院衛生署. '民國98年死因統計結果分析,' http://www.doh.gov.tw/CHT2006/DM/DM2_2_p02.aspx?class_no=440&now_fod_list_no=11397&level_no=4&doc_no=76512.
[2] P. Pisani, D. M. Parkin, and J. Ferlay, “Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden,” International Journal of Cancer, vol. 55, no. 6, pp. 891-903, 1993.
[3] L. W. Bassett, M. Ysrael, R. H. Gold, and C. Ysrael, “Usefulness of Mammography and Sonography in Women Less Than 35 Years of Age,” Radiology, vol. 180, no. 3, pp. 831-835, Sep, 1991.
[4] V. P. Jackson, “The Role of Us in Breast Imaging,” Radiology, vol. 177, no. 2, pp. 305-311, Nov, 1990.
[5] A. C. Society. 'Breast Cancer Facts and Figures 2005-2006,' http://www.cancer.org/acs/groups/content/@nho/documents/document/caff2005brfacspdf2005pdf.pdf.
[6] Y. Zheng, J. F. Greenleaf, and J. J. Gisvold, “Reduction of breast biopsies with a modified self-organizing map,” Ieee Transactions on Neural Networks, vol. 8, no. 6, pp. 1386-1396, Nov, 1997.
[7] M. Woo Kyung, S. Yi-Wei, B. Min Sun, H. Chiun-Sheng, C. Jeon-Hor, and C. Ruey-Feng, “Computer-Aided Tumor Detection Based on Multi-Scale Blob Detection Algorithm in Automated Breast Ultrasound Images,” Medical Imaging, IEEE Transactions on, vol. 32, no. 7, pp. 1191-1200, 2013.
[8] T. Tan, B. Platel, R. Mus, L. Tabar, R. M. Mann, and N. Karssemeijer, “Computer-aided Detection of Cancer in Automated 3D Breast Ultrasound,” Medical Imaging, IEEE Transactions on, vol. PP, no. 99, pp. 1-1, 2013.
[9] A. Karamalis, W. Wein, T. Klein, and N. Navab, “Ultrasound confidence maps using random walks,” Medical Image Analysis, vol. 16, no. 6, pp. 1101-1112, 8, 2012.
[10] D. W. Hosmer, and S. Lemeshow, Applied Logistic Regression: Wiley, 2004.
[11] R. R. Picard, and R. D. Cook, “Cross-Validation of Regression Models,” Journal of the American Statistical Association, vol. 79, no. 387, pp. 575-583, 1984.
[12] “A Threshold Selection Method from Gray-Level Histograms,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 9, no. 1, pp. 62-66, 1979.
[13] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” Medical Image Computing and Computer-Assisted Intervention - Miccai'98, vol. 1496, pp. 130-137, 1998.
[14] V. Vezhnevets, and V. Konouchine, 'GrowCut: Interactive multi-label ND image segmentation by cellular automata.' pp. 150-156.
[15] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach to connected-component labeling for arbitrary image representations,” J. ACM, vol. 39, no. 2, pp. 253-280, 1992.
[16] R. Battiti, “Using mutual information for selecting features in supervised neural net learning,” Neural Networks, IEEE Transactions on, vol. 5, no. 4, pp. 537-550, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60411-
dc.description.abstract全乳房超音波為新一代的乳癌篩檢工具,為了使此工具能更廣泛的應用,並協助醫師偵測與診斷乳房腫瘤,避免遺漏可疑的病灶,我們提出一全乳房超音波影像腫瘤偵測演算法。首先對影像做一個前景遮罩,將未照到乳房的部分去除,再對遮罩內的乳房影像做四組不同範圍的multi-scale球狀偵測,利用接收超音波訊號信心程度與乳房解剖資訊,大幅將非腫瘤的球狀結構刪除後,聯集四組不同範圍所剩餘的球狀結構為一組,再針對聯集後剩餘的球狀結構,擷取球狀結構的類球狀機率、大小以及位於肌肉層的機率特徵,使用MIFS(mutual information based feature selection),挑選前三個有效的特徵,以邏輯斯迴歸分析模型作為分類器,進行LOOCV交互驗證的方法,並實作Moon等人的研究,使用相同的影像,以及相同的交互驗證方法與我們的演算法比較,使用29位病人,共49組影像,包含86個病灶,得到ROC曲線下面積0.93高於Moon等人方法0.82的結果。zh_TW
dc.description.abstractWhole breast ultrasound is a new generation of screening tool for breast cancer. In order to make this new technology more widely applicable, assist lesion detection and diagnosis in clinical practice, and avoid the missing of potential lesions, we propose a lesion detection algorithm for whole breast ultrasound. We firstly conduct a masking preprocess to discard the dark non-breast regions in the image volume, and then apply four passes of multi-scale blob detection on the remaining regions. Following that we discard most unlikely blob structures according to a computed confidence map and the prior knowledge of breast anatomy. The confidence map is derived from the physical ultrasonic property. After this discard step, we collect the survival blob structures from the results of four passes blob detection in a single set. The features of blobness, size, and probability of being at muscle layer of the all survival blob structures are adopted in a classification process for the differentiation of true lesions from negative ones in the collection set. MIFS (mutual information based feature selection) procedure is applied to select three most effective features for the purpose of dimension reduction. With the aid of logistic regression classifier and the process of LOOCV cross validation method, we are able to achieve high ROC area in 0.93 on the testing 49 image volumes. The 49 image volumes were acquired from 29 patients and contains totally 86 lesions. Moon's method is also implemented as baseline with the performance of ROC area in 0.82. The experimental results suggest that our method is better than Moon's lesion detection method.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:17:31Z (GMT). No. of bitstreams: 1
ntu-102-R98548052-1.pdf: 1650523 bytes, checksum: 29c81700bf85e6ebe2e5e1560f1d582d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 問題描述 3
1.3 相關研究 5
第二章 研究材料與方法 7
2.1 研究材料與演算法流程圖 7
2.2 研究方法 8
2.2.1 前景遮罩(Foreground mask) 9
2.2.2 球狀偵測(Blob detection) 9
2.2.3 以接收超音波訊號信心程度與片狀特徵進行候選病灶選取(Candidate lesions selection with confidence maps and sheet-based features) 12
2.2.4 特徵擷取(Features extraction) 20
2.2.5 區分候選腫瘤為腫瘤或非腫瘤(Tumor and non-tumor classification) 23
第三章 實驗與結果 24
第四章 討論與結論 36
參考文獻 38
dc.language.isozh-TW
dc.subject全乳房超音波zh_TW
dc.subject球狀偵測zh_TW
dc.subject片狀偵測zh_TW
dc.subjectHessian matrixzh_TW
dc.subject超音波信心程度mapszh_TW
dc.subjectAutomated breast ultrasounden
dc.subjectBlob detectionen
dc.subjectSheet detectionen
dc.subjectHessian matrixen
dc.subjectUltrasound confidence mapsen
dc.title融入乳房解剖資訊之全乳房超音波影像腫瘤偵測演算法zh_TW
dc.titleA Tumor Detection Algorithm for Whole Breast Ultrasound Images Incorporating Breast Anatomy Informationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭介誌(Jie-Zhi Cheng),鄭文皇(Wen-Huang Cheng)
dc.subject.keyword全乳房超音波,球狀偵測,片狀偵測,Hessian matrix,超音波信心程度maps,zh_TW
dc.subject.keywordAutomated breast ultrasound,Blob detection,Sheet detection,Hessian matrix,Ultrasound confidence maps,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2013-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved