請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60398
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾賢忠 | |
dc.contributor.author | Ho-Yin Huang | en |
dc.contributor.author | 黃合吟 | zh_TW |
dc.date.accessioned | 2021-06-16T10:17:11Z | - |
dc.date.available | 2023-08-16 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-17 | |
dc.identifier.citation | Amigorena, S., Bonnerot, C., Choquet, D., Fridman, W.H., and Teillaud, J.-L. (1989). FcγRII expression in resting and activated B lymphocytes. European Journal of Immunology 19, 1379-1385.
Amissah-Arthur, M.B., and Gordon, C. (2009). GPs have key role in shared care of patients with SLE. The Practitioner 253, 19-24, 12. Ashburner, B.P., Westerheide, S.D., and Baldwin, A.S., Jr. (2001). The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Molecular and Cellular Biology 21, 7065-7077. Ballestar, E., Esteller, M., and Richardson, B.C. (2006). The epigenetic face of systemic lupus erythematosus. Journal of Immunology 176, 7143-7147. Borra, M.T., Smith, B.C., and Denu, J.M. (2005). Mechanism of human SIRT1 activation by resveratrol. The Journal of Biological Chemistry 280, 17187-17195. Brooks, D.G., Qiu, W.Q., Luster, A.D., and Ravetch, J.V. (1989). Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes. The Journal of Experimental Medicine 170, 1369-1385. Cambier, J.C. (1995). Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). Journal of Immunology 155, 3281-3285. Chen, L.F., Mu, Y., and Greene, W.C. (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. The EMBO Journal 21, 6539-6548. Colin, D., Limagne, E., Jeanningros, S., Jacquel, A., Lizard, G., Athias, A., Gambert, P., Hichami, A., Latruffe, N., Solary, E., Delmas, D. (2011) Endocytosis of resveratrol via lipid rafts and activation of downstream signaling pathways in cancer cells. Cancer Prevention Research. 4, 1095-106 Costenbader, K.H., Feskanich, D., Stampfer, M.J., and Karlson, E.W. (2007). Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. Arthritis and Rheumatism 56, 1251-1262. Crosslin, K.L., and Wiginton, K.L. (2009). The impact of race and ethnicity on disease severity in systemic lupus erythematosus. Ethnicity & Disease 19, 301-307. Daeron, M., Latour, S., Malbec, O., Espinosa, E., Pina, P., Pasmans, S., and Fridman, W.H. (1995). The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc γ RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 3, 635-646. Dai, Y., Rahmani, M., Dent, P., and Grant, S. (2005). Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-κB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Molecular and Cellular Biology 25, 5429-5444. DeLeo, A.B., Jay, G., Appella, E., Dubois, G.C., Law, L.W., and Old, L.J. (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proceedings of the National Academy of Sciences of the United States of America 76, 2420-2424. Dorner, T., and Lipsky, P.E. (2006). Signalling pathways in B cells: implications for autoimmunity. Current Topics in Microbiology and Immunology 305, 213-240. Falk Nimmerjahn1 and Jeffrey V. Ravetch. (2008). Fcγ receptors as regulators of immune responses. Nature Reviews Immunology 8, 34-47. Ferry-Dumazet, H., Garnier, O., Mamani-Matsuda, M., Vercauteren, J., Belloc, F., Billiard, C., Dupouy, M., Thiolat, D., Kolb, J.P., Marit, G., et al. (2002). Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis 23, 1327-1333. Fessler, B.J., Alarcon, G.S., McGwin, G., Jr., Roseman, J., Bastian, H.M., Friedman, A.W., Baethge, B.A., Vila, L., and Reveille, J.D. (2005). Systemic lupus erythematosus in three ethnic groups: XVI. Association of hydroxychloroquine use with reduced risk of damage accrual. Arthritis and Rheumatism 52, 1473-1480. Furie, R., Stohl, W., Ginzler, E.M., Becker, M., Mishra, N., Chatham, W., Merrill, J.T., Weinstein, A., McCune, W.J., Zhong, J., et al. (2008). Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Research & Therapy 10, R109. Gao, Z., and Ye, J. (2008). Inhibition of transcriptional activity of c-JUN by SIRT1. Biochemical and Biophysical Research Communications 376, 793-796. Gerl, V., Lischka, A., Panne, D., Grossmann, P., Berthold, R., Hoyer, B.F., Biesen, R., Bruns, A., Alexander, T., Jacobi, A., et al. (2010). Blood dendritic cells in systemic lupus erythematosus exhibit altered activation state and chemokine receptor function. Annals of the Rheumatic Diseases 69, 1370-1377. Godau, J., Heller, T., Hawlisch, H., Trappe, M., Howells, E., Best, J., Zwirner, J., Verbeek, JS., Hogarth, PM., Gerard, C., Van Rooijen, N., Klos, A., Gessner, JE., and Kohl, J. (2004). C5a initiates the inflammatory cascade in immune complex peritonitis. The Journal of Immunology 173, 3437-3445. Gogada, R., Prabhu, V., Amadori, M., Scott, R., Hashmi, S., and Chandra, D. Resveratrol induces p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated Bax protein oligomerization on mitochondria to initiate cytochrome c release and caspase activation. The Journal of Biological Chemistry 286, 28749-28760. Gottlicher, M., Minucci, S., Zhu, P., Kramer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO Journal 20, 6969-6978. Grabiec, A.M., Tak, P.P., and Reedquist, K.A. (2008). Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Research & Therapy 10, 226. Hogarth, P.M., and Pietersz, G.A. (2012). Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nature Reviews Drug Discovery 11, 311-331. Iwuchukwu, OF., and Nagar, S. (2008). Resveratrol (trans-resveratrol, 3,5,4'-trihydroxy- trans-stilbene) glucuronidation exhibits atypical enzyme kinetics in various protein sources. Drug Metabolism and Disposition 36, 322-330 Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.H., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218-220. Kaldas, MI., Walle, UK., and Walle, T.(2003). Resveratrol transport and metabolism by human intestinal caco-2 cells. Journal of Pharmacy and Pharmacology 55, 307-312. Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annual Review of Immunology 18, 621-663. Kiernan, R., Bres, V., Ng, R.W.M., Coudart, M.-P., El Messaoudi, S., Sardet, C., Jin, D.-Y., Emiliani, S., and Benkirane, M. (2003). Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65. Journal of Biological Chemistry 278, 2758-2766. Ko, YC., Chang, CL., Chien, HF., Wu, CH., Lin, LI. (2011) Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Letters. 309, 46-53 Komarova, E.A., Krivokrysenko, V., Wang, K., Neznanov, N., Chernov, M.V., Komarov, P.G., Brennan, M.L., Golovkina, T.V., Rokhlin, O.W., Kuprash, D.V., et al. (2005). p53 is a suppressor of inflammatory response in mice. FASEB Journal 19, 1030-1032. Kundu, J.K., Shin, Y.K., Kim, S.H., and Surh, Y.J. (2006). Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-κB in mouse skin by blocking IκB kinase activity. Carcinogenesis 27, 1465-1474. Lancon, A., Delmas, D., Osman, H., Thenot, JP., Jannin, B., and Latruffe, N.(2004). Human hepatic cell uptake of resveratrol: Involvement of both passive diffusion and carrier-mediated process. Biochemical and Biophysical Research Communications 316, 1132-1137. Lin, H.Y., Shih, A., Davis, F.B., Tang, H.Y., Martino, L.J., Bennett, J.A., and Davis, P.J. (2002). Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line. The Journal of Urology 168, 748-755. Lisa C. Willcocks, Kenneth G.C. Smith and Menna R. Clatworthy. (2009). Low-affinity Fcg receptors, autoimmunity and infection. Expert Reviews in Molecular Medicine 11,1-29 Liu, HS., Pan, CE., Yang, W., Liu, XM. (2003) Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice. World Journal of Gastroenterology 9, 1474-1476. Mackay, M., Stanevsky, A., Wang, T., Aranow, C., Li, M., Koenig, S., Ravetch, J.V., and Diamond, B. (2006). Selective dysregulation of the FcγIIB receptor on memory B cells in SLE. The Journal of Experimental Medicine 203, 2157-2164. Menendez, D., Shatz, M., and Resnick, M.A. (2013). Interactions between the tumor suppressor p53 and immune responses. Current Opinion in Oncology 25, 85-92. Meyaard, A.V.a.L. (2005). Signaling by ITIM-bearing receptors. Current Immunology Reviews 1, 201-212. Moser, K.L., Kelly, J.A., Lessard, C.J., and Harley, J.B. (2009). Recent insights into the genetic basis of systemic lupus erythematosus. Genes and Immunity 10, 373-379. Neugebauer, R.C., Sippl, W., and Jung, M. (2008). Inhibitors of NAD+ dependent histone deacetylases (sirtuins). Current Pharmaceutical Design 14, 562-573. Nikolina, M., Elisaveta, V., Andrey T., Maria N., Antoaneta, M., Todor, T. Luba, S., Hristo, T., and Tchavdar Vassilev. (2008). Selective silencing of disease-associated B-lymphocytes by chimeric molecules targeting their FcγIIb receptor. International Immunology 20 ,165-175. Odorizzi, PM., and Wherry, EJ. (2012). Inhibitory receptors on lymphocytes: insights from infections. The Journal of Immunology 188, 2957-2965. Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433. Paunovic, V., Carter, NA., Thalhamer, T., Blair, D., Gordon, B., Lacey, E., Michie, AM., Harnett, MM. (2012). Immune complex-mediated co-ligation of the BCR with FcγRIIB results in homeostatic apoptosis of B cells involving Fas signalling that is defective in the MRL/Lpr model of systemic lupus erythematosus. Journal of Autoimmunity 39, 332-346. Pritchard, N.R., and Smith, K.G. (2003). B cell inhibitory receptors and autoimmunity. Immunology 108, 263-273. Quigley, M., Pereyra, F., Nilsson, B., Porichis, F., Fonseca, C., Eichbaum, Q., Julg, B., Jesneck, J.L., Brosnahan, K., Imam, S., et al. (2010). Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nature Medicine 16, 1147-1151. Ravetch, J.V., and Lanier, L.L. (2000). Immune inhibitory receptors. Science 290, 84-89. Sanz, I., and Lee, F.E. (2010). B cells as therapeutic targets in SLE. Nature Reviews Rheumatology 6, 326-337. Sequeira, J., Boily, G., Bazinet, S., Saliba, S., He, X., Jardine, K., Kennedy, C., Staines, W., Rousseaux, C., Mueller, R., et al. (2008). Sirt1-null mice develop an autoimmune-like condition. Experimental Cell Research 314, 3069-3074. Shanker, S., Chen, Q., Siddiqui, I., Sarva, K., and Srivastava, R.K. (2007). Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 4', 5 tri-hydroxystilbene): molecular mechanisms and therapeutic potential. Journal of Molecular Signaling 2, 7 She, A.M., Bode, W.Y., Ma, N.Y., and Chen, Z. Dong. (2001). Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Research 61, 1604–1610. Singh, NP., Hegde, VL., Hofseth, LJ., Nagarkatti, M., Nagarkatti, P. (2011). Resveratrol (trans-3,5,4'-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Molecular Pharmacology 72, 1508-1521. Siriboonrit, U., Tsuchiya, N., Sirikong, M., Kyogoku, C., Bejrachandra, S., Suthipinittharm, P., Luangtrakool, K., Srinak, D., Thongpradit, R., Fujiwara, K., et al. (2003). Association of Fcγ receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61, 374-383. Smith, K.G., and Clatworthy, M.R. (2010). FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nature Reviews Immunology 10, 328-343. Soleas, G.J., Diamandis, E.P., and Goldberg, D.M. (1997). Resveratrol: a molecule whose time has come? And gone? Clinical Biochemistry 30, 91-113. Su, K., Wu, J., Edberg, J.C., Li, X., Ferguson, P., Cooper, G.S., Langefeld, C.D., and Kimberly, R.P. (2004). A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. Journal of Immunology 172, 7186-7191. Subramanian, L., Youssef, S., Bhattacharya, S., Kenealey, J., Polans, AS., and van Ginkel, PR. (2010). Resveratrol: challenges in translation to the clinic--a critical discussion. Clinical Cancer Research. 16 ,5942-5948. Svajger, U., and Jeras, M. (2012). Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. International Reviews of Immunology 31, 202-222. Takai, T., Ono, M., Hikida, M., Ohmori, H., and Ravetch, J.V. (1996). Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346-349. Tzeng, S.J., Bolland, S., Inabe, K., Kurosaki, T., and Pierce, S.K. (2005). The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl family kinase-dependent pathway. The Journal of Biological Chemistry 280, 35247-35254. Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L., and Weinberg, R.A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159. Wang, Y., Romigh, T., He, X., Orloff, MS., Silverman, RH., Heston, WD., Eng, C. (2010). Resveratrol regulates the PTEN/AKT pathway through androgen receptor- dependent and -independent mechanisms in prostate cancer cell lines. Human Molecular Genetics. 19, 4319-4129 Xuzhu, G., Komai-Koma, M., Leung, B.P., Howe, H.S., McSharry, C., McInnes, I.B., and Xu, D. (2012). Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Annals of the Rheumatic Diseases 71, 129-135. Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. (2004). Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal 23, 2369-2380. Yu, W., Fu, Y.C., and Wang, W. (2012). Cellular and molecular effects of resveratrol in health and disease. Journal of Cellular Biochemistry 113, 752-759. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60398 | - |
dc.description.abstract | FcγRIIB是B細胞上最重要的抑制性受體。FcγRIIB主要是透過免疫複合體和B細胞活化性受體BCR在細胞表面結合,進而負調控B細胞的活化、增生及分化。然而,在免疫複合體不被BCR辨認下,FcγRIIB本身亦可經由自體結合引起細胞的凋亡。在過去的研究中顯示,FcγRIIB的基因剔除老鼠會產生類似於人類紅斑性狼瘡的症狀出現,包括:B細胞的過度活化及在不同組織器官中免疫複合體的堆積。而在紅斑性狼瘡的患者中,FcγRIIB受體在B細胞上的表現量也有減少的現象,自然也助長了自體抗體的製造和免疫複合體的產生。綜上,顯見FcγRIIB受體在預防自體免疫疾病中扮演著重要的角色。我們想藉由藥物調控來增加FcγRIIB的表現以達到治療紅斑性狼瘡的目的。在先前利用螢光系統來篩選藥物,我們成功的找到白藜蘆醇 (Resveratrol)可以增加FcγRIIB的轉錄,但其機轉不清楚。因此,本篇論文使用了不同種類的專一性化學抑制劑來釐清白藜蘆醇調控FcγRIIB上升的分子機制。在我們的研究中發現白藜蘆醇透過抑制IKK或是活化SIRT1最終達到抑制NF-κB的轉錄活性,使得FcγRIIB轉錄增加並表現在細胞膜表面上,其中組蛋白乙醯酶 (HDAC)及p53也參與了調控FcγRIIB。此外,在B細胞株、周邊血B細胞以及動物實驗中,我們皆觀察到白藜蘆醇經由活化FcγRIIB可促使B細胞走向凋亡,進而緩解紅斑性狼瘡。總結,我們的研究提供了利用天然藥物白藜蘆醇透過抑制NF-κB的路徑調控FcγRIIB受體上升,使之傳遞抑制性訊息來清除過度活化的自體免疫B細胞,對於治療紅斑性狼瘡應可發展為一種新療法,單獨使用或與現今盛行毒殺B細胞的標靶治療合併使用,可能有更佳療效及具廣泛應用價值。 | zh_TW |
dc.description.abstract | FcγRIIB is a key negative regulator that blocks B cell activation, proliferation and differentiation through coengagement with BCR in the presence of cognate immune complexes. In addition, homo-aggregation of FcγRIIB by non-cognate immune complexes can trigger signal for B-cell apoptosis. The crucial role of FcγRIIB can be demonstrated in FcγRIIB deficient mice that produce massive autoantibodies and develop immune complexes related autoimmune disease resembling systemic lupus erythematosus (SLE). In human lupus patients, the reduced expression of FcγRIIB is readily found in memory B cells, presumably fueling a heightened humoral response. Thus, we reasoned that using an agent to up-regulate FcγRIIB on B cells might serve as a therapeutic. To this end, we have performed drug screens. Resveratrol is one of the top lead compounds that can up-regulate transcription of FcγRIIB and surface expression in B cells. In this study, we focused on investigation of the molecular mechanisms of how resveratrol up-regulates FcγRIIB. Our results show that resveratrol can induce up-regulation of FcγRIIB through direct or indirect inhibition of NF-κB, which is modulated by SIRT1, HDAC1 and HDAC3. In addition, resveratrol increases and activates p53 to induce expression levels of FcγRIIB. The up-regulation of FcγRIIB in response to resveratrol can enhance immune complex mediated apoptosis of B cells through FcγRIIB. All these data provide a rationale via targeting FcγRIIB to allow immune complexes to trigger B-cell apoptosis. In support of these findings we demonstrate that resveratrol can result in a decrease of B cell number and relief of symptoms of lupus in MRL/lpr mice. In summary, my thesis work has unraveled the molecular basis of how resveratrol eliminate autoreactive B cells through FcγRIIB and also provided a feasible strategy for FcγRIIB-based therapy in the treatment of systemic lupus erythematosus. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:17:11Z (GMT). No. of bitstreams: 1 ntu-102-R00443007-1.pdf: 5308084 bytes, checksum: 8e119b6c68612e14606380923c2e8cbf (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III Abstract IV List of Abbreviations VI Contents VIII Contents of Figures X Contents of Tables X Chapter 1 Introduction 1 1.1. Systemic lupus erythematosus (SLE) 2 1.1.1. Etiology of SLE 2 1.1.2. Therapies for SLE 4 1.2. Immune Inhibitory receptors 6 1.2.1. Mechanisms of immune inhibitory receptors 8 1.2.2. Fcγ receptors 8 1.2.3. FcγRIIB receptor 10 1.3. Resveratrol 13 1.3.1. Anti-aging effect of resveratrol 13 1.3.2. Anti-inflammatory effect of resveratrol 14 1.3.3. Anti-cancer effect of resveratrol 14 1.4. Role of NF-κB, SIRT1, and p53 in inflammation 15 1.4.1. Nuclear factor-κB (NF-κB) 15 1.4.2. Sirtuin 1 (SIRT1) 15 1.4.3. Tumor protein 53 (p53) 16 1.4.4. The relationship between SIRT1, NF-κB and p53 in inflammation 16 1.5. Motivation 17 Chapter 2 Materials and Methods 19 2.1. Reagents 20 2.2. Cells and cell culture 20 2.3. Mice 21 2.4. Human peripheral blood mononuclear cells (PBMCs) isolation 21 2.5. FcγRIIB promoter linked luciferase constructs 22 2.6. Cell transfection and luciferase reporter assay 23 2.7. Cell viability 23 2.8. RNA extractions, reverse transcription, and RT-PCR 24 2.9. Immunoblot and antibodies 25 2.10. Chromatin Immunoprecipitation (ChIP) 26 2.11. Flow cytometry and antibodies 26 2.12. Complete blood counts (CBCs) 28 Chapter 3 Results 29 3.1. Resveratrol significantly up-regulated the transcription of FcγRIIB reporter gene in BJAB B cells than that of 293T cells 30 3.2. Resveratrol up-regulated FcγRIIB expression at the transcriptional and translational levels in BJAB cells 32 3.3. Resveratrol enhanced B-cell apoptosis through FcγRIIB in response to non-cognate immune complexes. 32 3.4. Histone deacetylases (HDACs) were involved in resveratrol-induced up-regulation of FcγRIIB 34 3.5. Resveratrol up-regulated FcγRIIB gene transcription by inhibiting NF-κB 36 3.6. Resveratrol activated p53 and the effects on FcγRIIB 38 3.7. Resveratrol reduced the binding of p65 and p53 to FcγRIIB promoter region 38 3.8. Resveratrol up-regulated FcγRIIB on B cells and increased the elimination of lymphocytes in vivo. 40 Chapter 4 Discussions 42 Figures 52 References 95 | |
dc.language.iso | en | |
dc.title | 白藜蘆醇調控B細胞抑制性Fc受體緩解系統性紅斑性狼瘡之機轉 | zh_TW |
dc.title | Molecular mechanisms of resveratrol in the treatment of systemic lupus erythematosus through the inhibitory Fc receptor | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江伯倫,羅傅倫(Steve Roffler) | |
dc.subject.keyword | 白藜蘆醇,系統性紅斑性狼瘡, | zh_TW |
dc.subject.keyword | Resveratrol,SLE, | en |
dc.relation.page | 103 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。