請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60376完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉逸軒(I-Hsuan Liu) | |
| dc.contributor.author | Ke-Hsuan Wei | en |
| dc.contributor.author | 魏可軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:16:41Z | - |
| dc.date.available | 2018-08-22 | |
| dc.date.copyright | 2013-08-22 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-18 | |
| dc.identifier.citation | Ara, T., Tokoyoda, K., Sugiyama, T., Egawa, T., Kawabata, K., and Nagasawa, T. (2003). Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19, 257-267.
Barbazuk, W.B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J.A., McPherson, J.D., and Johnson, S.L. (2000). The syntenic relationship of the zebrafish and human genomes. Genome research 10, 1351-1358. Bendel-Stenzel, M.R., Gomperts, M., Anderson, R., Heasman, J., and Wylie, C. (2000). The role of cadherins during primordial germ cell migration and early gonad formation in the mouse. Mechanisms of development 91, 143-152. Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., and Zako, M. (1999). Functions of cell surface heparan sulfate proteoglycans. Annual review of biochemistry 68, 729-777. Blaser, H., Eisenbeiss, S., Neumann, M., Reichman-Fried, M., Thisse, B., Thisse, C., and Raz, E. (2005). Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. Journal of cell science 118, 4027-4038. Boldajipour, B., Mahabaleshwar, H., Kardash, E., Reichman-Fried, M., Blaser, H., Minina, S., Wilson, D., Xu, Q., and Raz, E. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell 132, 463-473. Braat, A.K., van de Water, S., Goos, H., Bogerd, J., and Zivkovic, D. (2000). Vasa protein expression and localization in the zebrafish. Mechanisms of development 95, 271-274. Braat, A.K., Zandbergen, T., van de Water, S., Goos, H.J., and Zivkovic, D. (1999). Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Developmental dynamics : an official publication of the American Association of Anatomists 216, 153-167. Burger, J.A., and Peled, A. (2009). CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23, 43-52. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., Oh, E.Y., Gaber, M.W., Finklestein, D., Allen, M., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer cell 11, 69-82. Charnaux, N., Brule, S., Hamon, M., Chaigneau, T., Saffar, L., Prost, C., Lievre, N., and Gattegno, L. (2005). Syndecan-4 is a signaling molecule for stromal cell-derived factor-1 (SDF-1)/CXCL12. Febs J 272, 1937-1951. Cotman, S.L., Halfter, W., and Cole, G.J. (1999). Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin. Exp Cell Res 249, 54-64. Das, S.K., Wang, X.N., Paria, B.C., Damm, D., Abraham, J.A., Klagsbrun, M., Andrews, G.K., and Dey, S.K. (1994). Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120, 1071-1083. David, G., Bai, X.M., Van der Schueren, B., Cassiman, J.J., and Van den Berghe, H. (1992). Developmental changes in heparan sulfate expression: in situ detection with mAbs. The Journal of cell biology 119, 961-975. De Felici, M. (2000). Regulation of primordial germ cell development in the mouse. The International journal of developmental biology 44, 575-580. Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., Esguerra, C.V., Leung, T., and Raz, E. (2002). Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111, 647-659. Dumstrei, K., Mennecke, R., and Raz, E. (2004). Signaling pathways controlling primordial germ cell migration in zebrafish. Journal of cell science 117, 4787-4795. Fujimoto, T., Yoshinaga, K., and Kono, I. (1985). Distribution of fibronectin on the migratory pathway of primordial germ cells in mice. The Anatomical record 211, 271-278. Garcia-Castro, M.I., Anderson, R., Heasman, J., and Wylie, C. (1997). Interactions between germ cells and extracellular matrix glycoproteins during migration and gonad assembly in the mouse embryo. The Journal of cell biology 138, 471-480. Gevers, P., Dulos, J., Schipper, H., and Timmermans, L.P.M. (1992). Origin of Primordial Germ-Cells, as Characterized by the Presence of Nuage, in Embryos of the Teleost Fish Barbus-Conchonius. Eur J Morphol 30, 195-204. Godin, I., Wylie, C., and Heasman, J. (1990). Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development 108, 357-363. Gorsi, B., Whelan, S., and Stringer, S.E. (2010). Dynamic expression patterns of 6-O endosulfatases during zebrafish development suggest a subfunctionalisation event for sulf2. Developmental dynamics : an official publication of the American Association of Anatomists 239, 3312-3323. Hamaguchi, S. (1982). A light- and electron-microscopic study on the migration of primordial germ cells in the teleost, Oryzias latipes. Cell and tissue research 227, 139-151. Hashimoto, Y., Maegawa, S., Nagai, T., Yamaha, E., Suzuki, H., Yasuda, K., and Inoue, K. (2004). Localized maternal factors are required for zebrafish germ cell formation. Developmental biology 268, 152-161. Haston, K.M., Tung, J.Y., and Reijo Pera, R.A. (2009). Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PloS one 4, e5654. Hay, B., Jan, L.Y., and Jan, Y.N. (1988). A Protein-Component of Drosophila Polar Granules Is Encoded by Vasa and Has Extensive Sequence Similarity to Atp-Dependent Helicases. Cell 55, 577-587. Heasman, J., Hynes, R.O., Swan, A.P., Thomas, V., and Wylie, C.C. (1981). Primordial germ cells of Xenopus embryos: the role of fibronectin in their adhesion during migration. Cell 27, 437-447. Heasman, J., and Wylie, C.C. (1981). Contact Relations and Guidance of Primordial Germ-Cells on Their Migratory Route in Embryos of Xenopus-Laevis. P Roy Soc B-Biol Sci 213, 41-+. Houston, D.W., and King, M.L. (2000). A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127, 447-456. Ikenishi, K. (1998). Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Development Growth & Differentiation 40, 1-10. Inda, M.M., Bonavia, R., Mukasa, A., Narita, Y., Sah, D.W., Vandenberg, S., Brennan, C., Johns, T.G., Bachoo, R., Hadwiger, P., et al. (2010). Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes & development 24, 1731-1745. Ishihara, M., Fedarko, N.S., and Conrad, H.E. (1986). Transport of Heparan-Sulfate into the Nuclei of Hepatocytes. J Biol Chem 261, 3575-3580. Kagami, H., Tagami, T., Matsubara, Y., Harumi, T., Hanada, H., Maruyama, K., Sakurai, M., Kuwana, T., and Naito, M. (1997). The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken. Mol Reprod Dev 48, 501-510. Karagenc, L., Cinnamon, Y., Ginsburg, M., and Petitte, J.N. (1996). Origin of primordial germ cells in the prestreak chick embryo. Developmental genetics 19, 290-301. Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., and Nusslein-Volhard, C. (2000). Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. The Journal of cell biology 149, 875-888. Knaut, H., Steinbeisser, H., Schwarz, H., and Nusslein-Volhard, C. (2002). An evolutionary conserved region in the vasa 3'UTR targets RNA translation to the germ cells in the zebrafish. Current biology : CB 12, 454-466. Koprunner, M., Thisse, C., Thisse, B., and Raz, E. (2001). A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes & development 15, 2877-2885. Krovel, A.V., and Olsen, L.C. (2002). Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mechanisms of development 116, 141-150. Lawson, K.A., Meneses, J.J., and Pedersen, R.A. (1991). Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891-911. Lee, J.S., and Chien, C.B. (2004). When sugars guide axons: Insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 5, 923-935. Moore, L.A., Broihier, H.T., Van Doren, M., Lunsford, L.B., and Lehmann, R. (1998). Identification of genes controlling germ cell migration and embryonic gonad formation in Drosophila. Development 125, 667-678. Morrison, S.J., and Spradling, A.C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell 132, 598-611. Nishiumi, F., Komiya, T., and Ikenishi, K. (2005). The mode and molecular mechanisms of the migration of presumptive PGC in the endoderm cell mass of Xenopus embryos. Development, growth & differentiation 47, 37-48. Orr-Urtreger, A., Avivi, A., Zimmer, Y., Givol, D., Yarden, Y., and Lonai, P. (1990). Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development 109, 911-923. Ota, S., Tonou-Fujimori, N., and Yamasu, K. (2009). The roles of the FGF signal in zebrafish embryos analyzed using constitutive activation and dominant-negative suppression of different FGF receptors. Mechanisms of development 126, 1-17. Parichy, D.M., Rawls, J.F., Pratt, S.J., Whitfield, T.T., and Johnson, S.L. (1999). Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126, 3425-3436. Raz, E. (2003). Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet 4, 690-700. Saffman, E.E., and Lasko, P. (1999). Germline development in vertebrates and invertebrates. Cellular and molecular life sciences : CMLS 55, 1141-1163. Saito, K., Nishida, K.M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., Siomi, H., and Siomi, M.C. (2006). Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes & development 20, 2214-2222. Saitou, M., Barton, S.C., and Surani, M.A. (2002). A molecular programme for the specification of germ cell fate in mice. Nature 418, 293-300. Sang, X., Curran, M.S., and Wood, A.W. (2008). Paracrine insulin-like growth factor signaling influences primordial germ cell migration: in vivo evidence from the zebrafish model. Endocrinology 149, 5035-5042. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods 9, 676-682. Schlueter, P.J., Peng, G., Westerfield, M., and Duan, C. (2007). Insulin-like growth factor signaling regulates zebrafish embryonic growth and development by promoting cell survival and cell cycle progression. Cell death and differentiation 14, 1095-1105. Seydoux, G., and Strome, S. (1999). Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 126, 3275-3283. Soto-Suazo, M., San Martin, S., Ferro, E.S., and Zorn, T.M. (2002). Differential expression of glycosaminoglycans and proteoglycans in the migratory pathway of the primordial germ cells of the mouse. Histochemistry and cell biology 118, 69-78. Spence, R., Gerlach, G., Lawrence, C., and Smith, C. (2008). The behaviour and ecology of the zebrafish, Danio rerio. Biological reviews of the Cambridge Philosophical Society 83, 13-34. Starz-Gaiano, M., and Lehmann, R. (2001). Moving towards the next generation. Mechanisms of development 105, 5-18. Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K.A., Richter, U., Cojocaru, V., Tarabykin, V., Wylie, C., Kessel, M., and Raz, E. (2004). Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Developmental biology 272, 351-361. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A., and Tabata, T. (2004). Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73-82. Takeuchi, Y., Molyneaux, K., Runyan, C., Schaible, K., and Wylie, C. (2005). The roles of FGF signaling in germ cell migration in the mouse. Development 132, 5399-5409. Tautz, D., and Pfeifle, C. (1989). A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81-85. Timmermans, L.P.M., and Taverne, N. (1989). Segregation of Primordial Germ-Cells - Their Numbers and Fate during Early Development of Barbus Conchonius (Cyprinidae, Teleostei) as Indicated by Thymidine-H-3 Incorporation. J Morphol 202, 225-237. Weidinger, G., Wolke, U., Koprunner, M., Klinger, M., and Raz, E. (1999). Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Development 126, 5295-5307. Williamson, A., and Lehmann, R. (1996). Germ cell development in Drosophila. Annual review of cell and developmental biology 12, 365-391. Witt, D.P., and Lander, A.D. (1994). Differential binding of chemokines to glycosaminoglycan subpopulations. Current biology : CB 4, 394-400. Wong, T.T., and Collodi, P. (2013). Effects of specific and prolonged expression of zebrafish growth factors, Fgf2 and Lif in primordial germ cells in vivo. Biochemical and biophysical research communications 430, 347-351. Yoon, C., Kawakami, K., and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157-3165. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60376 | - |
| dc.description.abstract | 硫酸乙醯肝素蛋白聚醣 (heparan sulfate proteoglycan, HSPGs) 是由長鏈聚合的硫酸乙醯肝素醣胺聚醣 (Heparan sulfate glycosaminoglycans, HS-GAGs)共價結合核心蛋白所組成,為細胞表面和細胞外基質的主要成分之一。其可與多種因子,例如:生長激素、趨化激素及morphogens等結合,繼而調節細胞內訊息傳遞等行為。早期斑馬魚胚胎發育中,始基生殖細胞 (primordial germ cell, PGC) 於初始發生處依特定路徑遷移至性腺發育的生殖脊。前人研究指出HS-GAGs穩定SDF-1/CXCR4複合體形成,其訊息傳遞亦被證實確能參與始基生殖細胞之遷移。因此,HS-GAGs可能於PGC遷移至生殖脊的過程中扮演重要的角色。
為謹證明HS-GAGs存在於PGC遷移的路徑上,本研究乃進行螢光免疫染色試驗;試驗結果顯示,完整的HS-GAGs存在於PGCs的周圍。 為謹探討HS-GAGs對PGCs遷移的重要性,進一步研究乃針對一細胞期斑馬魚胚進行注射hpse1-nanos-1 3’UTR mRNA,以於PGCs內大量表現特定地乙醯肝素酶 (heparanase1, hpse1)。 鑒於顯微注射試驗開始之前,曾設計的斑馬魚hpse1 (zhpse1)蛋白質序列分析,結果顯示殊與其他多種模式物種諸如:人類、小鼠…等之hpse1頗有高度之同源性,且zhpse1 活性試驗之結果亦顯示吾人選殖的zhpse1確實有水解HS-GAGs的活性。 進一步透過原位雜合試驗 (whole-mount in situ hybridization) 之結果, 顯示HS-GAGs有大量水解導致6 hours postfertilization (hpf) 胚胎 PGCs異常遷移且無法形成規則的四群細胞之情事。因此,吾人乃進一步量化PGCs遷移的距離,結果顯示PGCs確實呈現失序地遷移至異常位置之情事 (p<0.01)。 除此之外,原位雜合試驗結果,顯示HSGAGs大量水解導致8hpf,10hpf和24hpf胚胎內的PGCs數量減少。因此,試驗乃藉由RT-PCR進一步完成量化PGCs特定標誌,結果亦證明在hpse1大量表現之10hpf早期胚中,其PGCs數量確有顯著少於彼等野生型 (wild type) 之胚者。 為謹確認HS-GAGs大量水解導致PGCs數量減少是因為增生能力下降或是細胞凋亡增加,進一步透過DNA 斷裂端標記試驗 (TUNEL assay) 之結果,顯示凋亡的PGCs數量確有顯著多於彼等野生型之胚者。 綜上所述, 鑒於zhpse1在演化過程中頗有高度之同源性,且斑馬魚早期胚中需要HS-GAGs參與以利PGCs遷移和數目增加。 | zh_TW |
| dc.description.abstract | Heparan sulfate glycosaminoglycan (HS-GAG) is a linear polysaccharide ubiquitously residing on the animal cell surface and the extracellular matrix usually in the form of heparan sulfate proteoglycans. It binds many proteins, such as various chemokines, growth factors and morphogens, and in turn modulates intracellular signal transduction. After specified, zebrafish primordial germ cells (PGCs) migrate following specific routes from their sites of origin to gonadal ridge during early embryonic development. Previous studies showed that HS-GAGs participate in the SDF-1/CXCR4 signaling which plays a key role in the guidance of PGCs migration. Therefore, HS-GAGs may play important role in the migration of PGCs into gonadal ridges.
To assess the existence of HS-GAGs in the migrating PGCs, whole-mount immunohistochemistry revealed that cleaved HS-GAGs were found in PGCs whereas intact HS-GAGs were presented in the vicinity of PGCs. To study the potential role of HS-GAG in zebrafish PGCs migration, we overexpressed recombinant hpse1 specifically in PGCs by injecting hpse1-nanos-1 3’UTR mRNA in l-cell stage embryos of zebrafish. In silico analysis, indicated that zebrafish hpse1 is highly conserved throughout vertebrates, while dot blot analysis demonstrated the HS-GAGs degrading activity of the hpse1 we cloned. Whole-mount in situ hybridization showed that PGCs mismigrated and barely formed four clusters at 6 hours postfertilization (hpf). We further calculated the migration distance showed that PGCs disorderly migrate to different position (p<0.01). In addition, observation under the fluorescent microscopy suggested that PGCs in Tg(Kop:EGFP-F-nanos1-3’UTR) transgenic line fail to increase in number after injecting hpse1-nanos-1 3’UTR mRNA in 8hpf, 10hpf and 24 hpf embryos. Quantitative RT-PCR indicated that overexpressing recombinant hpse1 in 10 hpf embryos resulted in the significantly decreased expression level of PGCs marker gene compared to the wild type embryos (p<0.05). TUNEL assay and quantitative analysis showed that overexpressing recombinant hpse1 in 10 hpf embryos resulted in the significantly increased percentage of apoptotic PGCs (p<0.001). These results suggested that zebrafish hpse1 is conserved throughout evolution and indicated that PGCs migration and increasing in number requires HS-GAGs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:16:41Z (GMT). No. of bitstreams: 1 ntu-102-R00626014-1.pdf: 2642064 bytes, checksum: 36e76b7f48070efbd032e88ff2774534 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv CONTENTS vi LIST OF TABLE ix LIST OF FIGURES x Introduction - 1 - Specification of PGCs - 2 - Migration of PGCs - 4 - Heparan sulfate proteoglycans and glycosaminoglycans - 5 - Zebrafish as an animal model - 7 - Specific aims - 9 - Materials and methods - 10 - Zebrafish strain and maintenance - 10 - Construction of expression vector - 10 - Whole mount immunohistochemistry - 12 - In vitro mRNA transcription and microinjection - 13 - In silico analysis of heparanase1 - 13 - Heparanase activity assay - 14 - Digoxigenin (DIG)-labled riboprobe preparation - 15 - Whole mount in situ hybridization - 15 - Quantitative analysis of PGCs Migration distance - 16 - Real-time PCR analysis - 17 - TUNEL assay - 18 - Statistical analysis - 18 - Table - 19 - Results - 20 - Heparan sulfate epitope was detected in the migratory vicinity of PGCs during early embryonic development - 20 - Zebrafish heparanase1 is highly conserved throughout evolution - 21 - Loss of heparan sulfate resulted in the mismigration of PGCs during zebrafish early development - 22 - Loss of heparan sulfate resulted in decreased count of PGCs during zebrafish early development - 23 - Loss of HS-GAGs resulted in increasing numbers of apoptotic PGCs at 10 hpf - 24 - Figures - 26 - Discussion - 36 - References - 42 - | |
| dc.language.iso | en | |
| dc.subject | 細胞遷移 | zh_TW |
| dc.subject | 硫酸乙醯肝素醣胺聚醣 | zh_TW |
| dc.subject | 始基生殖細胞 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | heparan sulfate glycosanimoglycan | en |
| dc.subject | primordial germ cell | en |
| dc.subject | cell migration | en |
| dc.subject | zebrafish | en |
| dc.title | 始基生殖細胞在斑馬魚胚胎發育過程中需要硫酸乙醯肝素以利遷移和增殖 | zh_TW |
| dc.title | Primordial germ cells require heparan sulfate to properly migrate and multiply during early embryonic development in the zebrafish Daino rerio | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭登貴(Teng-Kuei Cheng),張俊哲(Chun-Che Chang),林劭品(Shau-Ping Lin) | |
| dc.subject.keyword | 始基生殖細胞,硫酸乙醯肝素醣胺聚醣,細胞遷移,斑馬魚, | zh_TW |
| dc.subject.keyword | primordial germ cell,heparan sulfate glycosanimoglycan,cell migration,zebrafish, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
