Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊曜宇(Eric Y. Chuang)
dc.contributor.authorLi-Jung Jenen
dc.contributor.author任立容zh_TW
dc.date.accessioned2021-06-16T10:16:24Z-
dc.date.available2013-08-26
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-18
dc.identifier.citation1. Freshney, R.I., Culture of Animal Cells: A Manual of Basic Technique, 5th Ed.
2005.
2. Ross, D.T., et al., Systematic variation in gene expression patterns in human
cancer cell lines. Nat Genet, 2000. 24(3): p. 227-35.
3. Goodwin, E.C. and D. DiMaio, Repression of human papillomavirus oncogenes
in HeLa cervical carcinoma cells causes the orderly reactivation of dormant
tumor suppressor pathways. Proc Natl Acad Sci U S A, 2000. 97(23): p.
12513-8.
4. Harima, Y., et al., Prediction of outcome of advanced cervical cancer to
thermoradiotherapy according to expression profiles of 35 genes selected by
cDNA microarray analysis. Int J Radiat Oncol Biol Phys, 2004. 60(1): p.
237-48.
5. Liotta, L. and E. Petricoin, Molecular profiling of human cancer. Nat Rev Genet,
2000. 1(1): p. 48-56.
6. Burdall, S.E., et al., Breast cancer cell lines: friend or foe? Breast Cancer Res,
2003. 5(2): p. 89-95.
7. Sandberg, R. and I. Ernberg, Assessment of tumor characteristic gene expression
in cell lines using a tissue similarity index (TSI). Proc Natl Acad Sci U S A,
2005. 102(6): p. 2052-7.
8. Perou, C.M., et al., Distinctive gene expression patterns in human mammary
epithelial cells and breast cancers. Proc Natl Acad Sci U S A, 1999. 96(16): p.
9212-7.
9. Stein, W.D., et al., A Serial Analysis of Gene Expression (SAGE) database
analysis of chemosensitivity: comparing solid tumors with cell lines and
comparing solid tumors from different tissue origins. Cancer Res, 2004. 64(8): p.
2805-16.
10. Hoffman, R.M., Three-dimensional histoculture: origins and applications in
cancer research. Cancer Cells, 1991. 3(3): p. 86-92.
11. Hoffman, R.M., In vitro sensitivity assays in cancer: a review, analysis, and
prognosis. J Clin Lab Anal, 1991. 5(2): p. 133-43.
12. Capes-Davis, A., et al., Check your cultures! A list of cross-contaminated or
misidentified cell lines. Int J Cancer, 2010. 127(1): p. 1-8.
13. MacLeod, R.A., et al., Widespread intraspecies cross-contamination of human
tumor cell lines arising at source. Int J Cancer, 1999. 83(4): p. 555-63.
14. Drexler, H.G., et al., False leukemia-lymphoma cell lines: an update on over 500
cell lines. Leukemia, 2003. 17(2): p. 416-26.
15. Forozan, F., et al., Comparative genomic hybridization analysis of 38 breast
cancer cell lines: a basis for interpreting complementary DNA microarray data.
Cancer Res, 2000. 60(16): p. 4519-25.
16. Uwe R. Muller , D.V.N., Microarray Technology and Its Applications.
Biological and Medical Physics, Biomedical Engineering, 2005.
17. Leming Shi, W.H., Zhenqiang Su, Xianping Lu, and Weida Tong, Microarrays:
Technologies and Applications. Applied Mycology & Biotechnology. 3(Fungal
51
Genomics).
18. Consortium, M., et al., The MicroArray Quality Control (MAQC) project shows
inter- and intraplatform reproducibility of gene expression measurements. Nat
Biotechnol, 2006. 24(9): p. 1151-61.
19. Guo, L., et al., Rat toxicogenomic study reveals analytical consistency across
microarray platforms. Nat Biotechnol, 2006. 24(9): p. 1162-9.
20. Brazma, A., et al., Minimum information about a microarray experiment
(MIAME)-toward standards for microarray data. Nat Genet, 2001. 29(4): p.
365-71.
21. Edgar, R., M. Domrachev, and A.E. Lash, Gene Expression Omnibus: NCBI
gene expression and hybridization array data repository. Nucleic Acids Res,
2002. 30(1): p. 207-10.
22. Rustici, G., et al., ArrayExpress update--trends in database growth and links to
data analysis tools. Nucleic Acids Res, 2013. 41(Database issue): p. D987-90.
23. Sherlock, G., et al., The Stanford Microarray Database. Nucleic Acids Res, 2001.
29(1): p. 152-5.
24. Heng, T.S., M.W. Painter, and C. Immunological Genome Project, The
Immunological Genome Project: networks of gene expression in immune cells.
Nat Immunol, 2008. 9(10): p. 1091-4.
25. Leupin, N., et al., Gene expression profiling reveals consistent differences
between clinical samples of human leukaemias and their model cell lines. Br J
Haematol, 2006. 135(4): p. 520-3.
26. Carlson, M.W., V.R. Iyer, and E.M. Marcotte, Quantitative gene expression
assessment identifies appropriate cell line models for individual cervical cancer
pathways. BMC Genomics, 2007. 8: p. 117.
27. Barretina, J., et al., The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity. Nature, 2012. 483(7391): p. 603-7.
28. Rhodes, D.R., et al., ONCOMINE: a cancer microarray database and integrated
data-mining platform. Neoplasia, 2004. 6(1): p. 1-6.
29. Xi, Y., et al., Global comparative gene expression analysis of melanoma patient
samples, derived cell lines and corresponding tumor xenografts. Cancer
Genomics Proteomics, 2008. 5(1): p. 1-35.
30. Ertel, A., et al., Pathway-specific differences between tumor cell lines and
normal and tumor tissue cells. Mol Cancer, 2006. 5(1): p. 55.
31. Liu, L., et al., Robust singular value decomposition analysis of microarray data.
Proc Natl Acad Sci U S A, 2003. 100(23): p. 13167-72.
32. Forbes, S.A., et al., COSMIC: mining complete cancer genomes in the
Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res, 2011.
39(Database issue): p. D945-50.
33. Johnson, W.E., C. Li, and A. Rabinovic, Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics, 2007. 8(1): p.
118-27.
34. Alter, O., P.O. Brown, and D. Botstein, Singular value decomposition for
genome-wide expression data processing and modeling. Proc Natl Acad Sci U S
A, 2000. 97(18): p. 10101-6.
35. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000.
406(6797): p. 747-52.
36. Holliday, D.L. and V. Speirs, Choosing the right cell line for breast cancer
52
research. Breast Cancer Res, 2011. 13(4): p. 215.
37. Neve, R.M., et al., A collection of breast cancer cell lines for the study of
functionally distinct cancer subtypes. Cancer Cell, 2006. 10(6): p. 515-27.
38. Sherman, B.T., et al., DAVID Knowledgebase: a gene-centered database
integrating heterogeneous gene annotation resources to facilitate
high-throughput gene functional analysis. BMC Bioinformatics, 2007. 8: p. 426.
39. Wistuba, II, et al., Comparison of features of human lung cancer cell lines and
their corresponding tumors. Clin Cancer Res, 1999. 5(5): p. 991-1000.
40. de Jonge, H.J., et al., Evidence based selection of housekeeping genes. PLoS
One, 2007. 2(9): p. e898.
41. Cailleau, R., M. Olive, and Q.V. Cruciger, Long-term human breast carcinoma
cell lines of metastatic origin: preliminary characterization. In Vitro, 1978.
14(11): p. 911-5.
42. Rae, J.M., et al., MDA-MB-435 cells are derived from M14 melanoma cells--a
loss for breast cancer, but a boon for melanoma research. Breast Cancer Res
Treat, 2007. 104(1): p. 13-9.
43. Roschke, A.V., et al., Karyotypic complexity of the NCI-60 drug-screening panel.
Cancer Res, 2003. 63(24): p. 8634-47.
44. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
45. Yeoh, E.J., et al., Classification, subtype discovery, and prediction of outcome in
pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer
Cell, 2002. 1(2): p. 133-143.
46. Osborne, C.K., K. Hobbs, and J.M. Trent, Biological differences among MCF-7
human breast cancer cell lines from different laboratories. Breast Cancer Res
Treat, 1987. 9(2): p. 111-21.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60364-
dc.description.abstract細胞株是一種由生物細胞分離出來作為實驗用模式系統的重要工具,其基因
表現圖譜理論上和其來源的生物細胞相同,但根據近年的研究發現,細胞株為了
要能夠持續不斷地分裂出新的細胞,會使得與細胞增殖相關的基因高度被表現,
造成與臨床組織有著不同的表現型,因此科學家在選擇使用最合適的細胞株當作
實驗材料之前,必須檢測細胞株與臨床檢體之間基因型和表現型的相似性是很重
要的工作。微陣列生物晶片是一項高通量檢測基因表現量的工具,利用此技術可
以同時獲得大量基因於細胞株之間的表現差異。但是在現有的線上細胞株資料庫
中,大都僅提供細胞株的資料查詢和不同細胞株之間基因表達的比較,缺乏和臨
床樣本的基因表現做比較及連結。本研究主要是建構一個以細胞株和臨床組織樣
本之生物晶片資料為基礎,進行癌症細胞株的線上基因圖譜比較系統-Carkinos。
其三大功能特色有:生物晶片資料檢索、細胞株相似性評估、以及基因標誌(gene
signature)瀏覽。生物晶片資料檢索功能提供了在732 個不同的細胞株與2,158 個臨
床檢體樣本中,查詢特定基因在不同細胞株及臨床檢體中的表現量,其中作為正
規化依據的內部控制參考值,除了透過常見的ACTB 與 GAPDH 二種管家基因之
表現量作為正規化的參考值外,並提供了利用最小變異係數作為統計定義上相對
穩定的基因當作正規化參考依據。細胞株相似性評估提供了一個量化細胞株相似
性的量化模型,藉著將微陣列生物晶片的資料以奇異值分解轉換後降低維度至150
度,在此維度空間中以尤拉距離的方式量化細胞株之間的相似性,並計算其幾何
中心,作為使用者挑選細胞株時的參考依據。基因標誌瀏覽透過t 檢定或是單因子
變異數分析(one-way ANOVA)取得二群或是多群細胞株及臨床檢體之間的差異比
iii
較。本研究使用的資料和數學模型經過個案討論和文獻的交互參照,確定有相當
的準確度:使用生物晶片資料檢索能夠成功辨識屬於乳癌分子亞型(Luminal A)
的細胞株T47D 和MCF7,並預測出可能屬於此分子亞型的細胞株EFM-19,同時
提出基因RPL41 作為新的管家基因;利用細胞株相似性評估找出分類錯誤的細胞
株MDA-MB-435 及OVCAR8,並提出可能分類錯誤的細胞株名單;最後,利用基
因標誌瀏覽的功能,提出大細胞肺癌細胞株在建立的過程中產生的基因圖譜改
變,提供細胞株和臨床檢體的差異作為研究參考。此外,與現有的線上細胞株資
料庫比較,Carkinos 不只有更短的運算時間以及更直覺的操作環境,更將細胞株的
資料和活體組織樣本的資料經過整理、連結和比較,是一個作為挑選細胞株以及
研究細胞株之差異性的有用工具。
zh_TW
dc.description.abstractCell lines are one of the most important materials served as model systems in the studies of biology, with their characteristics similar or identical to the cells which
they were derived from. However, previous studies reported that gene expression profiles of cell lines may change during their establishments, which results in the inappropriate using of cell lines to represent tissues in living organisms. For this reason, it is necessary for scientists to check genetic similarities between cell lines and clinical tissues before deciding the most suitable cell lines as materials, and microarray information helps to distinguish this problem by examining thousands of genes’
expressions at the same time. There are several microarray databases containing cell line information, such as Cancer Cell Line Encyclopedia and Oncomine. However, existing microarray databases about cell line information only provide genetic information of cell lines, without mentioning the relationship between cell lines and
clinical samples, and the rigid operation interfaces bring difficulties in acquiring information.
By collecting available microarray data of cell lines and clinical tissue samples published online, a web-based comprehensive comparison system named Carkinos is
established. Carkinos is composed of microarray data from both cell lines and clinical tissue samples, and then achieves the comparison by three main functions: searching of gene expressions in cell lines and clinical tissue samples, similarity assessments of cell lines to cell lines or tissues, and gene signature explorer. Searching of gene expression in cell lines and clinical tissues helps identify the expansiveness or specificity of genes, in which gene expression values in 732 different cell lines and 2,158 different clinical tissue samples can be seen, and it supports three internal controls, including two commonly used housekeeping genes: ACTB and GAPDH, and one statistical-defined most stable gene calculated by the smallest coefficient of variation from the selected
arrays, to normalize the expression values. Similarity assessment provides a quantitative method to measure the resemblance of cell lines by using singular value decomposition transformation of microarray data, decomposing to 150 dimensions and calculating each Euclidean distance as a conjunct geometric center to represent the tissue expression profiles. Gene signature explorer is helpful in comparing two or more groups of cell lines and clinical tissue samples by Student’s t-test or one-way ANOVA, espectively.
The quality of data in Carkinos and the precision of these three functions have been tested by several case studies, and the outputs of comparisons are endorsed with published papers. By using the function of searching gene expression in cell lines, breast cancer cell lines of the luminal A subtypes, such as T47D and MCF7 were verified while another cell line EFM-19 was discovered and suggested of the same
subtype, and gene RPL41 was found to be a candidate of housekeeping gene; similarity assessment helps to recognize misclassified cell lines such as MDA-MB-435 and OVCAR8; gene signature explorer successfully demonstrated the genetic change during cell line establishment of lung large cell carcinoma. Moreover, in contrast to other existing cell line databases, Carkinos provides not only faster computing speed and more straightforward operation interface, but also the uniqueness in combining and integrating information of cell lines and clinical samples.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:16:24Z (GMT). No. of bitstreams: 1
ntu-102-R00945016-1.pdf: 1851394 bytes, checksum: 81b11dd1e4511491f858728fa5b4d2f3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 ...................................................................................................... #
誌謝 i
中文摘要 ii
ABSTRACT ................................................................................................................ iv
CONTENTS ................................................................................................................ vi
LIST OF FIGURES ................................................................................................... viii
LIST OF TABLES ........................................................................................................ x
Chapter 1 Introduction .............................................................................................. 1
1.1 Cell Line ..................................................................................................... 1
1.2 Microarray .................................................................................................. 3
1.3 Microarray & Cell Line Databases .............................................................. 4
1.3.1 Gene Expression Omnibus ................................................................. 5
1.3.2 Cancer Cell Line Encyclopedia .......................................................... 6
1.3.3 Oncomine .......................................................................................... 7
1.4 Specific Aims ............................................................................................. 7
Chapter 2 Materials and Methods .......................................................................... 10
2.1 Overview of Carkinos ............................................................................... 10
2.2 Materials ................................................................................................... 11
2.2.1 Cell Line Data ................................................................................. 12
2.2.2 Clinical Tissue Sample Data . .......................................................... 13
2.2.3 L1000 Probe Set . ............................................................................ 15
vii
2.3 Methods .................................................................................................... 15
2.3.1 Function 1: Search of Microarray Data ............................................ 15
2.3.2 Function 2: Similarity Assessment . ................................................. 19
2.3.3 Function 3: Gene Signature Explorer . ............................................. 25
Chapter 3 Results ..................................................................................................... 26
3.1 Example 1: Search gene expressions in cell lines ...................................... 27
3.2 Example 2: Cell lines compared to clinical tissue samples ........................ 32
3.3 Example 3: Housekeeping genes stabilities among cell lines from different
primary sites ............................................................................................. 34
3.4 Example 4: Cell Line Misidentification ................................................... 36
3.5 Example 5: Gene Signature of Acute myeloid leukemia cell lines Compared
to Acute lymphoblastic T-cell leukemia cell lines .................................... 40
Chapter 4 Discussion................................................................................................ 44
4.1 Gene Expression Search in Cell Lines and Samples .................................. 44
4.2 Similarity Assessment ............................................................................... 45
4.3 Gene Signature Explorer ........................................................................... 46
4.4 Conclusion ................................................................................................ 46
REFERENCES ........................................................................................................... 50
dc.language.isozh-TW
dc.title利用微陣列基因晶片建構癌症細胞株之全方位比對系統zh_TW
dc.titleCarkinos: Using microarray information to establish a comprehensive comparison system for cancer cell lineen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee歐陽彥正(Yen-Jen Oyang),蔡孟勳,賴亮全
dc.subject.keyword癌症,細胞株,活體細胞樣本,基因表現圖譜比較,細胞株相似性,zh_TW
dc.subject.keywordCell line,clinical tissue sample,microarray,gene expression profile,similarity of cell lines,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2013-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved