Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60352
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏慧(Min-Huey Chen)
dc.contributor.authorStephanie Tsaien
dc.contributor.author蔡迪姍zh_TW
dc.date.accessioned2021-06-16T10:16:08Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-18
dc.identifier.citationChapter 7 References
1. Chen, F.M., et al., A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials, 2010. 31(31): p. 7892-927.
2. Chen, F.M. and Y. Jin, Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev, 2010. 16(2): p. 219-55.
3. Williams, D.F., To engineer is to create: the link between engineering and regeneration. Trends in Biotechnology, 2006. 24(1): p. 4-8.
4. Morrison, S.J. and J. Kimble, Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 2006. 441(7097): p. 1068-74.
5. Lyssiotis, C.A., B.D. Charete, and L.L. Lairson, Emerging technology platforms in stem cells. 2009, New York: Wiley.
6. Robinton, D.A. and G.Q. Daley, The promise of induced pluripotent stem cells in research and therapy. Nature, 2012. 481(7381): p. 295-305.
7. Bru, T., et al., Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res, 2008. 314(14): p. 2634-42.
8. Freberg, C.T., et al., Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell, 2007. 18(5): p. 1543-53.
9. Rajasingh, J., et al., Cell-free embryonic stem cell extract-mediated derivation of multipotent stem cells from NIH3T3 fibroblasts for functional and anatomical ischemic tissue repair. Circ Res, 2008. 102(11): p. e107-17.
10. Taranger, C.K., et al., Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell, 2005. 16(12): p. 5719-35.
11. Xu, Y.N., et al., ES cell extract-induced expression of pluripotent factors in somatic cells. Anat Rec (Hoboken), 2009. 292(8): p. 1229-34.
12. Neri, T., et al., Mouse fibroblasts are reprogrammed to Oct-4 and Rex-1 gene expression and alkaline phosphatase activity by embryonic stem cell extracts. Cloning Stem Cells, 2007. 9(3): p. 394-406.
13. Jin, J., et al., Analysis of differential proteomes of induced pluripotent stem cells by protein-based reprogramming of fibroblasts. J Proteome Res, 2011. 10(3): p. 977-89.
14. Han, J.N., P.S. Sachdev, and K.S. Sidhu, A Combined Epigenetic and Non-Genetic Approach for Reprogramming Human Somatic Cells. Plos One, 2010. 5(8).
15. Allegrucci, C., et al., Epigenetic reprogramming of breast cancer cells with oocyte extracts. Mol Cancer, 2011. 10(1): p. 7.
16. Ganier, O., et al., Synergic reprogramming of mammalian cells by combined exposure to mitotic Xenopus egg extracts and transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(42): p. 17331-17336.
17. Xiong, X.R., et al., Epigenetic reprogramming of Yak iSCNT embryos after donor cell pre-treatment with oocyte extracts. Anim Reprod Sci, 2012. 133(3-4): p. 229-36.
18. Bui, H.T., et al., Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development, 2012. 139(23): p. 4330-40.
19. Zhang, Q., et al., Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol, 2009. 183(12): p. 7787-98.
20. Wada, N., et al., Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res, 2011. 46(4): p. 438-47.
21. Egusa, H., et al., Gingival Fibroblasts as a Promising Source of Induced Pluripotent Stem Cells. Plos One, 2010. 5(9).
22. Tweten, R.K., Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infection and Immunity, 2005. 73(10): p. 6199-6209.
23. Naruse, K., et al., Streptolysin-O Treatment of Fetal Fibroblasts Improves Cell Fusion and In Vitro Development of Porcine Nuclear Transfer Embryos. Journal of Reproduction and Development, 2009. 55(3): p. 236-239.
24. Hall, E.H., et al., Inhibition of human breast cancer Matrigel invasion by Streptolysin O activation of the EGF receptor ErbB1. Cell Signal, 2011. 23(12): p. 1972-7.
25. Mamber, S.W., et al., Effects of streptolysin o on extracellular matrix gene expression in normal human epidermal keratinocytes. Dose Response, 2011. 9(4): p. 554-78.
26. Logsdon, L.K., et al., Streptolysin O Inhibits Clathrin-Dependent Internalization of Group A Streptococcus. Mbio, 2011. 2(1).
27. Aroian, R. and F.G. van der Goot, Pore-forming toxins and cellular non-immune defenses (CNIDs). Current Opinion in Microbiology, 2007. 10(1): p. 57-61.
28. Keyel, P.A., et al., Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. Journal of Cell Science, 2011. 124(14): p. 2414-2423.
29. Stassen, M., et al., The streptococcal exotoxin streptolysin O activates mast cells to produce tumor necrosis factor alpha by p38 mitogen-activated protein kinase- and protein kinase C-dependent pathways. Infect Immun, 2003. 71(11): p. 6171-7.
30. Stringaris, A.K., et al., Neurotoxicity of pneumolysin, a major pneumococcal virulence factor, involves calcium influx and depends on activation of p38 mitogen-activated protein kinase. Neurobiol Dis, 2002. 11(3): p. 355-68.
31. Husmann, M., et al., Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus alpha-toxin or streptolysin O. Biochem Biophys Res Commun, 2006. 344(4): p. 1128-34.
32. Kloft, N., et al., Pore-forming toxins activate MAPK p38 by causing loss of cellular potassium. Biochem Biophys Res Commun, 2009. 385(4): p. 503-6.
33. Hung, C.J., et al., Establishment of immortalized mesenchymal stromal cells with red fluorescence protein expression for in vivo transplantation and tracing in the rat model with traumatic brain injury. Cytotherapy, 2010. 12(4): p. 455-65.
34. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65(1-2): p. 55-63.
35. Smith, P.K., et al., Measurement of Protein Using Bicinchoninic Acid. Analytical Biochemistry, 1985. 150(1): p. 76-85.
36. Keira, S., et al., Experimental model for fibroblast culture. Acta Cir Bras, 2004. 19.
37. Miyoshi, K., et al., Generation of human induced pluripotent stem cells from oral mucosa. Journal of Bioscience and Bioengineering, 2010. 110(3): p. 345-350.
38. Yan, X., et al., iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev, 2010. 19(4): p. 469-80.
39. Tamaoki, N., et al., Dental pulp cells for induced pluripotent stem cell banking. J Dent Res, 2010. 89(8): p. 773-8.
40. Oda, Y., et al., Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem, 2010. 285(38): p. 29270-8.
41. Ohnuki, M., K. Takahashi, and S. Yamanaka, Generation and characterization of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol, 2009. Chapter 4: p. Unit 4A 2.
42. Aasen, T., et al., Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol, 2008. 26(11): p. 1276-84.
43. Seki, T., et al., Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 2010. 7(1): p. 11-4.
44. Kim, K., et al., Epigenetic memory in induced pluripotent stem cells. Nature, 2010. 467(7313): p. 285-90.
45. Sonoyama, W., et al., Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 2006. 1: p. e79.
46. Bhakdi, S., et al., Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: Prototypes of pore-forming bacterial cytolysins. Archives of Microbiology, 1996. 165(2): p. 73-79.
47. Sullivan, E.J., et al., Cloned calves from chromatin remodeled in vitro. Biol Reprod, 2004. 70(1): p. 146-53.
48. Mamber, S.W., et al., The use of streptolysin o for the treatment of scars, adhesions and fibrosis: initial investigations using murine models of scleroderma. Nonlinearity Biol Toxicol Med, 2004. 2(2): p. 67-87.
49. Kunath, T., et al., FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development, 2007. 134(16): p. 2895-902.
50. Buehr, M. and A. Smith, Genesis of embryonic stem cells. Philos Trans R Soc Lond B Biol Sci, 2003. 358(1436): p. 1397-402; discussion 1402.
51. Qu, J. and J.M. Bishop, Nucleostemin maintains self-renewal of embryonic stem cells and promotes reprogramming of somatic cells to pluripotency. J Cell Biol, 2012. 197(6): p. 731-45.
52. Buehr, M., et al., Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biol Reprod, 2003. 68(1): p. 222-9.
53. Shi, Y., et al., A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2008. 2(6): p. 525-8.
54. Silva, J., et al., Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol, 2008. 6(10): p. e253.
55. Jee, M.K., et al., DHP-derivative and low oxygen tension effectively induces human adipose stromal cell reprogramming. PLoS One, 2010. 5(2): p. e9026.
56. Hata, M., et al., Mechanical Stretch Increases the Proliferation While Inhibiting the Osteogenic Differentiation in Dental Pulp Stem Cells. Tissue Engineering Part A, 2013. 19(5-6): p. 625-633.
57. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
58. Stadtfeld, M., et al., Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008. 2(3): p. 230-240.
59. Chan, E.M., et al., Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnology, 2009. 27(11): p. 1033-U100.
60. Bai, Q., et al., Dissecting the first transcriptional divergence during human embryonic development. Stem Cell Rev, 2012. 8(1): p. 150-62.
61. Schick, B.P., et al., Serglycin proteoglycan expression and synthesis in embryonic stem cells. Biochim Biophys Acta, 2003. 1593(2-3): p. 259-67.
62. Jin, F., et al., Paradoxical expression of anti-apoptotic and MRP genes on cancer stem-like cell isolated from TJ905 glioblastoma multiforme cell line. Cancer Invest, 2008. 26(4): p. 338-43.
63. Gokhale, P.J., A.M. Giesberts, and P.W. Andrews, Brachyury is expressed by human teratocarcinoma cells in the absence of mesodermal differentiation. Cell Growth & Differentiation, 2000. 11(3): p. 157-162.
64. Egusa, H., et al., Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells. Tissue Eng, 2007. 13(10): p. 2589-600.
65. Mathew, S., et al., Analysis of alternative signaling pathways of endoderm induction of human embryonic stem cells identifies context specific differences. Bmc Systems Biology, 2012. 6.
66. Li, Z., et al., Small RNA-mediated regulation of iPS cell generation. EMBO J, 2011. 30(5): p. 823-34.
67. Svoboda, P. and M. Flemr, The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep, 2010. 11(8): p. 590-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60352-
dc.description.abstract僅藉由四個轉錄因子體細胞產生的誘導性多能幹細胞(iPS),已將細胞的再程式化(reprogramming)帶領進入另一領域。由於傳統iPS需要載體,但載體基因對於母體的嵌入等影響無法完全預測,已有源源不絕的研究,報導包括利用蛋白質而不直接參與DNA等方法來改善此問題。這種方法需要大量蛋白質萃取物,但目前的研究多利用老鼠胚胎幹細胞或畸胎瘤細胞株等作為來源,較難在日後應用於臨床。臍帶血已廣為認可為一穩定的具潛能性的間質幹細胞來源;人類牙齦纖維母細胞有極高的增生能力,且對於牙醫師為一方便收集的體細胞。儘管人類牙齦纖維母細胞在最近已被證實為傳統iPS方法進行再程式化的可行細胞來源,臍帶血間質幹細胞和人類牙齦纖維母細胞目前都未曾被使用於此種蛋白萃取方式進行的再程式化。鏈球菌溶血素O (SLO)為一種會造成細胞膜穿孔的細菌內毒素,已被廣泛使用於此種蛋白萃取方式進行的再程式化。然而,鏈球菌溶血素O在非致命劑量下對牙齦纖維母細胞的細胞毒性與訊息傳遞等影響目前仍未知。因此,本實驗研究目的為探討臍帶血間質幹細胞蛋白質萃取的方法使人類牙齦細胞進行再程式化及其表現。研究假設人類牙齦纖維母細胞可被幹細胞萃取再程式化。
根據上述問題進行以下研究方法:利用MTT和螢光染色評估SLO對牙齦纖維母細胞生存率和細胞膜穿孔效率的影響,利用西方墨點法分別SLO對牙齦纖維母細胞的訊息傳遞影響。加入臍帶血間質幹細胞萃取物的細胞,則利用反轉錄-聚合酶酵素鏈鎖反應和DNA微陣列,測量再程式化造成的基因的改變。此外,也透過多種細胞分化的方式確認再程式化的表現。
研究結果:低濃度SLO 對於牙齦和皮膚纖維母細胞的生存程度影響不大,但仍會達成一定程度的細胞膜開孔,且會誘導ERK1/2與P38的磷酸化表現。加入臍帶血間質幹細胞萃取物的牙齦纖維母細胞,會表現OCT4和NANOG等幹細胞基因; 且在後續成脂、成骨、神經等誘導分化上有較理想的表現。
結論:臍帶血間質幹細胞萃取物可使牙齦纖維母細胞在適當SLO濃度作用下進行再程式化,造成基因與分化能力的改變。
zh_TW
dc.description.abstractInduced pluripotent stem cell (iPS), generated from somatic cells by the four transcription factors, has been startling development of reprogramming technology. Since the integration of vectors is not fully predictable, a flood of studies have been publishing, including protein based-DNA free method. This method required abundant protein extracts, which were often collected by embryonic stem cells or teratocarcinoma, were harder to be applied clinically. Human cord blood has been established as a stable and potential source of mesenchymal stromal cells (cbMSC). Human gingival fibroblasts (GF) characterize as high proliferation rate and friendly collected by dentists. Although GF has recently been proved as a potential source by the traditional four-factor reprogramming via retrovirus, both cbMSC and GF have never been used in any DNA free reprogramming methods. Streptolysin O (SLO), a pore forming endotoxin, is widely used in protein delivery for DNA free reprograming. However, the response of GF treated with low sublytic dose has never been studied as well. Thus, we hypothesize that GF could be reprogrammed by protein extracs, and the research goal of the study is to reprogram GF by cbMSC’s protein extracts.
Materials and methods: The questions remained were evaluated as follows: SLO caused cell viability change was evaluated by MTT assay, the membrane permeabiliting efficiency was evaluated by fluorescence stain, and phosphorylation of signal pathways were evaluated by Western Blot. After adding stem cell extracts, the reprogramming effect was examined by RT-PCR and DNA microarray for mRNA level. The differentiation ability was also checked as well.
Results: Though SLO showed little effect at the concentration below 1000ng/mL, it caused membrane permeabilization in both GF and SF. Phosphorylation of ERK1/2 and P38 were also induced when SLO was treated. Adding cbMSC extracts in SLO treated GF increased the mRNA expression of OCT4 and NANOG, which were regarded as stem cell markers. Furthermore, these treated cells differentiated better in adipogenic, osteogenic, and neurogenic induction.
In conclusion, cbMSC extracts could reprogram SLO treated GF causing changes in genetic level and differentiation ability.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:16:08Z (GMT). No. of bitstreams: 1
ntu-102-R98422002-1.pdf: 5602999 bytes, checksum: 98dc12c916845648f8323ac7dbce4fe8 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xii
Abbreviations xiii
Chapter 1 Introduction 1
1.1 Periodontitis and its tissue-engineering strategies 1
1.2 Reprogramming and the assessments 1
1.3 Reprogramming via cell extracts 3
1.4 Gingiva and Gingival fibroblast (GF) 5
1.5 Streptolysin O (SLO) 5
1.6 SLO and MAPK signalings 6
1.6.1 p38: 6
1.6.2 ERK: 6
1.6.3 JNK: 7
Chapter 2 Design of the experiments 8
2.1 Hypothesis 8
2.2 Goal 8
2.3 Specific Aims 8
Chapter 3 Materials and Methods 10
3.1 Isolation and culture of GF 10
3.2 Culture of cbMSC 10
3.3 Culture of SF 11
3.4 Flow cytometry analysis 11
3.5 Evaluation of cell viability (MTT assay) 11
3.6 Preparation of stem cell extracts 12
3.7 Cell permeabilization and cell extract treatment 12
3.8 Permeability efficiency of SLO 13
3.9 RNA extraction and quantification 13
3.10 Reverse Transcription (RT) for cDNA preparation 14
3.11 Polymerase Chain Reaction (PCR) 14
3.12 Agarose gel electrophoresis 15
3.13 cDNA microarray 15
3.14 Total protein quantification 16
3.15 Western Blot 16
3.16 Adipogenic differentiation 17
3.17 Osteogenic differentiation 17
3.18 Neural differentiation 18
3.19 Immunofluorence Stain 18
3.20 Oil Red O Stain 18
3.21 ARS Stain 19
3.22 Data Normalization and Statistical Analysis 19
Chapter 4 Results 21
4.1 Cell morphology of cbMSC, primary-cultured human GF, SF, and stem cell extract treated GF 21
4.2 Purification and characterization of primary cultured GF 21
4.3 Different concentrations of SLO influenced cell viability 21
4.4 Different concentrations of SLO influenced cell membrane’s permeability 22
4.5 Different treatment times of SLO influenced MAPK phosphorylation 23
4.5.1 SLO induced ERK1/2 phosphorylation 23
4.5.2 SLO induced P38 phosphorylation 23
4.5.3 SLO didn’t induce JNK phosphorylation 24
4.6 mRNA level change in stem extracts treated GF 24
4.7 cDNA microarray 24
4.8 Adipogenic differentiation 25
4.9 Osteogenic differentiation 26
4.10 Neurogenic differentiation 26
Chapter 5 Discussion 66
5.1 GF as a potential cell to induce reprogramming 66
5.2 SLO effect 67
5.2.1 Effect of cell viability 67
5.2.2 The effect of SLO induced MAPK signaling 67
5.3 Gingival fibroblast is an acceptable candidate cell source for stem cell extracts delivery comparing to skin fibroblast 68
5.3.1 Comparison of cell viability in SLO treatment 68
5.3.2 Comparison of cell permeability in SLO treatment 68
5.3.3 Comparison of signaling in SLO treatment 69
5.4 Stem cell related mRNA level changed in stem cell extracts induced reprograming 70
5.5 Stem cell induced reprograming promoted cell differentiation 71
5.6 What really works as the key factors for reprogramming induced by stem cell extracts? 72
5.6.1 Proteins 72
5.6.2 microRNA/siRNA 73
Chapter 6 Conclusion 74
Chapter 7 References 76
LIST OF FIGURES
Fig. 2.1 Experimental Design 9
Fig. 4.1 Morphology of the cells 27
Fig. 4.2 Kl;kl 28
Fig. 4.3 MTT assay of GF and SF treated with SLO. 29
Fig. 4.4 Permeating efficiency of GF and SF treated with SLO. 32
Fig. 4.5 SLO induced ERK1/2 phosphorylation in GF and SF. 33
Fig. 4.6 U0126 inhibited SLO induced ERK1/2 phosphorylation in GF and SF. 36
Fig. 4.7 SLO induced P38 phosphorylation in GF and SF. 37
Fig. 4.8 SLO didn’t induce JNK phosphorylation in GF or SF. 38
Fig. 4.9 cbMSC extract induced mRNA expression level changed in GF. 40
Fig. 4.10 Quantile normalization of microarray samples. 41
Fig. 4.11 Correlation relationship of microarray samples. 41
Fig. 4.12 Principle component analysis (PCA) of microarray samples. 42
Fig. 4.13 Heatmap of ≥12X fold change comparing to GF in E1&E2&cbMSC but NOT E0 group 59
Fig. 4.14 Adipogenic differentiation. 60
Fig. 4.15 Osteogenic differentiation. 61
Fig. 4.16 Neurogenic differentiation for 7 days. 62
Fig. 4.17 Neurogenic differentiation for 10days. 63
Fig. 4.18 Neurogenic differentiation for 10days. 64
Fig. 4.19 Neurogenic differentiation for 10days. 65
Fig. 5.1 Protein proportion changed after stem cell treated reprogramming in mouse SF. 72
LIST OF TABLES
Table 1.1 Methods for reprogramming somatic cells to iPS cells 2
Table 1.2 Stem cell extracts promoting reprogramming by direct delivery 4
Table 1.3 Stem cell extracts promoting SCNT reprogramming 4
Table 3.1 Primer sequence 20
Table 3.2 Fluorescence antibodies or markers 20
Table 4.1 70 genes presented significant (12X) change due to stem cell extract treatment. 43
Table 4.2 GO 50
Table 4.3 Genes most influenced in the cbMSC extract treatment 58
dc.language.isoen
dc.subject鏈球菌溶血素Ozh_TW
dc.subject再程式化zh_TW
dc.subject人類牙齦纖維母細胞zh_TW
dc.subjecthuman gingival fibroblasten
dc.subjectreprogrammingen
dc.subjectstreptolysin Oen
dc.title幹細胞萃取物促進人類牙齦纖維母細胞的再程序化zh_TW
dc.titleStem Cell Extract Promotes the Reprogramming of Human Gingival Fibroblastsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林劭品(Shau-Ping Lin),林泰元(Thai-Yen Ling)
dc.subject.keyword人類牙齦纖維母細胞,再程式化,鏈球菌溶血素O,zh_TW
dc.subject.keywordhuman gingival fibroblast,reprogramming,streptolysin O,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2013-08-19
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved