Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60341Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 章良渭 | |
| dc.contributor.author | Kuan-Hung Chen | en |
| dc.contributor.author | 陳寬宏 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:15:55Z | - |
| dc.date.available | 2013-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | 1. Abe D, Yanagawa K, Niihata S. Effects of load carriage, load position, and walking speed on energy cost of walking. Applied Ergonomics 2004; 35: 329-35.
2. Attwells RL, Birrell SA, Hooper RH, Mansfield NJ. Influence of carrying heavy loads on soldiers' posture, movements and gait. Ergonomics 2006; 49:1527-37. 3. Bastien GJ, Willems PA, Schepens B, Heglund NC. Effect of load and speed on the energetic cost of human walking. European Journal of Applied Physiology 2005; 94: 76-83. 4. Birrell SA, Haslam RA. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics 2009; 52: 1298-304. 5. Chow DHK., Kwok MLY, Au-Yang ACK, Holmes AD, Cheng JCY, Yao FYD, Wong MS. The effect of backpack loads on the gait of normal adolescent girls. Ergonomics 2005; 15: 642-56. 6. Datta SR, Ramanathan NL. Ergonomic comparison of seven modes of carrying loads on the horizontal plane. Ergonomics 1971; 14: 269-78. 7. Dollar AM, Herr H. Lower extremity exoskeletons and activity orthoses: Challenges and state-of-the-art. IEEE Transactions on Robotics 2008; 24:144–58. 8. de Leva P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. Journal of biomechanics 1996; 29: 1223-30. 9. Garhammer J. Energy flow during Olympic weight lifting. Medicine and Science in Sports and Exercise 1982; 14: 353-60. 10. Guo LY, Su FC, An KN. Effect of handrim diameter on manual wheelchair propulsion: Mechanical energy and power flow analysis. Clinical biomechanics 2006; 21: 107-15. 11. Harman E, Han KH, Frykman P. Load-speed interaction effects on the biomechanics of backpack load carriage. Soldier mobility: innovations in load carriage system design and evaluation. Kingston, Canada: Research and Technology Organisation of NATO, 2000. 12. Hamill J, Knutzen K. Biomechanical basis of human movement. Baltimore: Lippincott Williams & Wikins; 2003. 13. Heglund NC, Willems PA, Penta M, Cavagna GA, Energy-saving gait mechanics with head-supported loads. Nature 1995; 375: 52-4. 14. Hong Y, Brueggemann GP. Changes in gait patterns in 10-year-old boys with increasing loads when walking on a treadmill. Gait and Posture 2000; 11: 254-259. 15. Johnson RF, Knapik JJ, Merullo DJ. Symptoms during load carriage: effects of mass and load distribution during a 20-km road march. Percept Mot Skills 1995; 81: 331-8. 16. Kinoshita H. Effects of different loads and carrying systems on selected biomechanical parameters describing walking gait. Ergonomics 1985; 28: 17. Kawamoto H, Sankai Y. Power assist system HAL-3 for gait disorder person. International Conf. on Computers Helping People with Special Needs 2002, Austria. 18. LaFiandra M, Holt KG, Wagenaar RC, Obusek JP. Transverse plane kinetics during treadmill walking with and without a load. Clinical Biomechanics 2002; 17: 116-22. 19. LaFiandra M, Wagenaar RC, Holt KG, Obusek JP. How do load carriage and walking speed influence trunk coordination and stride parameters. Journal of Biomechanics 2003; 36: 87-95. 20. Lafiandra M, Holt KG, Wagennaar RC, Obusek JP. Transverse plane kinetics during treadmill walking with and without a load. Clinical Biomechanics 2002; 17: 116-22. 21. Legg SJ, Mahanty A. Comparison of five modes of carrying a load close to the trunk. Ergonomics 1985; 28: 1653-60. 22. Lloyd R, Cooke CB. The oxygen consumption associated with unloaded walking and load carriage using two different backpack deigns. European Journal of Applied Physiology 2000; 81: 486-92. 23. Martin PE, Nelson RC. The effect of carried loads on the walking patterns of men and women. Ergonomics 2001; 29: 1191-202. 24. Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. Philadelphia, Pa: Lippincott Williams & Wilkins; 2001. 25. Pigrrynowsi MR, Norman RW, Winter DA. Mechanical energy analyses of the human during load carriage on a treadmill. Ergonomics 1981; 24: 1-14. 26. Quesada PM, Mengelkoch LJ, Hale RC, Simon SR. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics 2000; 43: 293-309. 27. Riley PO, Croce UD, Kerrigan DC. Effect of age on lower extremity joint moment contributions to gait speed. Gait and posture 2001; 14: 264-70. 28. Robertson DGE, Winter DA. Mechanical energy generation, absorption and transfer amongst segments during walking. Journal of Biomechanics 1980; 13: 845-54. 29. Robertson DGE, Dowling JJ. Design and responses of Butterworth and critically damped digital filters. Journal of Electromyography and kinesiology 2003; 13: 569-73. 30. Siegel KL, Kepple TM, Stanhope SJ. Joint moment control of mechanical energy flow during normal gait. Gait and posture 2004; 19: 69-75. 31. Singh T, Koh M. Lower limb dynamics change for children while walking with backpack loads to modulate shock transmission to the head. Journal of Biomechanics 2009; 42: 736-42. 32. Wang YT, Pascoe DD, Weimar W. Evaluation of book backpack load during walking. Ergonomics 2001; 9: 858-69. 33. Winter DA, Sidwall HG, Hobson DA. Measurement and reduction of noise in kinematics of locomotion. Journal of biomechanics 1974; 7: 157-9. 34. Winter DA, Robertson DG. Joint torque and energy patterns in normal gait. Biological Cybernetics 1978; 29: 137-42. 35. Winter DA. A new definition of mechanical work done in human movement. Journal of Applied Physiology 1979; 46: 79-83. 36. Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy 1990; 70: 340-7. 37. Winter DA. Biomechanics and motor control of human movement. New Jersey: John Wiley and Sons; 2005. 38. Zatsiorsky VM. Kinematics of human motion. Champaign, IL: Human kinetics; 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60341 | - |
| dc.description.abstract | 本文目的為利用機械能量流模型探討習用之背包載重步行策略。根據文獻,載重步行會改變原有的步態策略與增加代謝消耗。局部肢段重量的重新分配,可能導致系統整體的內力與能量分布產生變化。機械能量流模型結合運動學與力學資訊,以能量觀點闡述人體肢段能量分配、關節發動角色與系統能量流動樣態,提供更多人體運動策略的證據。
本文之步態實驗納入八名健康青壯年受試者。每位受試者著鞋、背負5種背包負荷(0%、10%、15%、20%與25%的受試者體重)以自選速度行走於實驗室環境下之十公尺走道。動作捕捉系統與三塊測力板在試驗中獲取肢段運動軌跡與地面反力,並於試驗後以逆向動力學方法建構能量流模型。 實驗結果顯示,額外的背包荷重會增加上半身與下肢間能量傳遞,並增加下肢關節的負荷。單腳站立側之髖關節與膝關節為載重步行時,主要的額外能量吸收與發動源。 | zh_TW |
| dc.description.abstract | Backpack load carriage induces metabolic cost and changes walking strategy. Local weight redistribution leads to changing entire transmission pattern of internal loads and power. The aim of this study is to investigate the strategy of walking with backpack loads through energy flow model, and to provide clinical recommendations for backpack load. The energy flow analysis would be a tool on observing the internal energy management during human locomotion.
Eight healthy young adults were recruited in our study. Subjects walked along 10-meter walkway with shoes at self-selected speed under the five load conditions: 0%, 10%, 15%, 20%, and 25% of the participant's body weight. Mechanical energy flow model was constructed based on human motion data and inverse dynamics. Our finding showed that increasing backpack load causes a significant interflow between trunk and legs due to greater energy capacity of upper body, and these extra interflow are generated/absorbed by the hip and knee of stance leg. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:15:55Z (GMT). No. of bitstreams: 1 ntu-102-R99548061-1.pdf: 2607265 bytes, checksum: 7a75222a9acdbb1866d455ebfb89773f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii Abstract iii 中文摘要 iv Contents v List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Literature review 2 1.3 Objectives and hypotheses 6 Chapter 2 Materials and Methods 7 2.1 Subjects 7 2.2 Experimental Protocol 7 2.3 Inverse dynamics 10 2.4 Energy Flow Model 15 Chapter 3 Results 19 Chapter 4 Discussion 32 Chapter 5 Conclusion 41 References 42 Appendix 46 A1 臺大醫院研究倫理委員會臨床試驗受式者同意書 46 A2 Mechanical joint power (Winter et al., 1990) 51 A3 Bony landmarks used for definition of the LCS of segment. 52 A4 The energy flow patterns of weight lifting (Garhammer et al., 1982) 53 A5 The energy flow patterns of normal gait (Winter et al., 1978) 54 A6 Mechanical energy flow components of segments during walking 55 | |
| dc.language.iso | en | |
| dc.subject | 步態 | zh_TW |
| dc.subject | 機械能量流 | zh_TW |
| dc.subject | 背包 | zh_TW |
| dc.subject | backpack | en |
| dc.subject | gait | en |
| dc.subject | mechanical energy flow | en |
| dc.title | 背包載重步行策略與機械能量流分析 | zh_TW |
| dc.title | A Study of Mechanical Energy Flow and the Strategy of Walking with Backpack Loads | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 相子元,劉強 | |
| dc.subject.keyword | 背包,步態,機械能量流, | zh_TW |
| dc.subject.keyword | backpack,gait,mechanical energy flow, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 2.55 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
