請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60303
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳奕君(I-Chun Cheng) | |
dc.contributor.author | Chih-Hung Tsai | en |
dc.contributor.author | 蔡志鴻 | zh_TW |
dc.date.accessioned | 2021-06-16T10:15:09Z | - |
dc.date.available | 2018-08-27 | |
dc.date.copyright | 2013-08-27 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-19 | |
dc.identifier.citation | 參考文獻
[1] J. E. Lilienfeld, '<J. E. Lilienfeld, US Patent 1 745 175>,' 1930. [2] P. K. Weimer, 'The TFT a new thin-film transistor,' Proceedings of the IRE, vol. 50, pp. 1462-1469, 1962. [3] P. Le Comber, W. Spear, and A. Ghaith, 'Amorphous-silicon field-effect device and possible application,' Electronics Letters, vol. 15, pp. 179-181, 1979. [4] H. Kawamoto, 'The history of liquid-crystal displays,' Proceedings of the IEEE, vol. 90, pp. 460-500, 2002. [5] C. Sheraw, L. Zhou, J. Huang, D. Gundlach, T. Jackson, M. Kane, et al., 'Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,' Applied Physics Letters, vol. 80, p. 1088, 2002. [6] B. Hung, K. Chiang, C. Huang, A. Chin, and S. McAlister, 'High-performance poly-silicon TFTs incorporating LaAlO3as the gate dielectric,' Electron Device Letters, IEEE, vol. 26, pp. 384-386, 2005. [7] P. Carcia, R. McLean, M. Reilly, and G. Nunes, 'Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,' Applied Physics Letters, vol. 82, pp. 1117-1119, 2003. [8] Y.-S. Tsai and J.-Z. Chen, 'Positive Gate-Bias Temperature Stability of RF-Sputtered Mg0.05Zn0.95O Active-Layer Thin-Film Transistors,' Electron Devices, IEEE Transactions on, vol. 59, pp. 151-158, 2012. [9] Y.-J. Chang, D.-H. Lee, G. Herman, and C.-H. Chang, 'High-performance, spin-coated zinc tin oxide thin-film transistors,' Electrochemical and solid-state letters, vol. 10, pp. H135-H138, 2007. [10] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, 'Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors,' Applied physics letters, vol. 90, pp. 123512-123512-3, 2007. [11] B. E. Deal and A. Grove, 'General relationship for the thermal oxidation of silicon,' Journal of Applied Physics, vol. 36, pp. 3770-3778, 1965. [12] A. Uedono, L. Wei, S. Tanigawa, R. Suzuki, H. Ohgaki, T. Mikado, et al., 'SiO2 films deposited on Si substrates studied by monoenergetic positron beams,' Journal of applied physics, vol. 75, pp. 216-222, 1994. [13] T. Tanaka, H. Asuma, K. Ogawa, Y. Shinagawa, K. Ono, and N. Konishi, 'An LCD addressed by a-Si: H TFTs with peripheral poly-Si TFT circuits,' in Electron Devices Meeting, 1993. IEDM'93. Technical Digest., International, 1993, pp. 389-392. [14] T. Fujimoto, H. Morimoto, and M. Ishii, 'Characteristics of plasma-enhanced-chemical-vapor-deposition tetraethylorthosilicate oxide and thin-film-transistor application,' Jpn. J. Appi. Phys. Vol, vol. 31, pp. 4570-4573, 1992. [15] W. Lim, J. H. Jang, S.-H. Kim, D. Norton, V. Craciun, S. Pearton, et al., 'Interface dependent electrical properties of amorphous InGaZnO4 thin film transistors,' Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 27, pp. 126-129, 2009. [16] G. Borvon, A. Goullet, A. Granier, and G. Turban, 'Analysis of low-k organosilicon and low-density silica films deposited in HMDSO plasmas,' Plasmas and polymers, vol. 7, pp. 341-352, 2002. [17] G. Gautier, N. Coulon, C. Viana, S. Crand, R. Rogel, A. Goullet, et al., 'POLYSILICON CMOS TFTS INVERTERS WITH A GATE SILICON OXIDE DEPOSITED USING PECVD WITH HEXAMETHYLDISILOXANE (HMDSO),' in Thin Film Transistor Technologies...: Proceedings of the... International Symposium, 2003, p. 55. [18] L. Han, P. Mandlik, J. Gartside, S. Wagner, J. A. Silvernail, R.-Q. Ma, et al., 'Properties of a Permeation Barrier Material Deposited from Hexamethyl Disiloxane and Oxygen,' Journal of The Electrochemical Society, vol. 156, pp. H106-H114, 2009. [19] L. Han, P. Mandlik, and S. Wagner, 'A New Gate Dielectric for Highly Stable Amorphous-Silicon Thin-Film Transistors With∼1.5-cm2/V • s Electron Field-Effect Mobility,' Electron Device Letters, IEEE, vol. 30, pp. 502-504, 2009. [20] C.-L. Fan, P.-C. Chiu, Y.-H. Yang, and C.-C. Lin, 'Low-temperature-processed (< 100° C) organic thin-film transistor using hollow-cathode CVD SiO2 as the gate insulator,' Semiconductor Science and Technology, vol. 25, p. 075006, 2010. [21] S.-J. Cho, I.-S. Bae, Y. G. Seol, N.-E. Lee, Y. S. Park, and J.-H. Boo, 'Study of the Characteristics of Organic Thin Film Transistors with Plasma-Polymer Gate Dielectrics,' Japanese Journal of Applied Physics, vol. 50, p. 01BC03, 2011. [22] M. R. Moon, E. Nam, J. Woo, S. Lee, K. Park, D. Jung, et al., 'Effects of surface treatments using PECVD-grown hexamethyldisiloxane on the performance of organic thin-film transistor,' Thin Solid Films, vol. 517, pp. 4161-4164, 2009. [23] K.-M. Chang, W.-C. Yang, and C.-P. Tsai, 'Electrical characteristics of low temperature polysilicon TFT with a novel TEOS/oxynitride stack gate dielectric,' Electron Device Letters, IEEE, vol. 24, pp. 512-514, 2003. [24] S. H. Cha, M. S. Oh, K. H. Lee, S. Im, B. H. Lee, and M. M. Sung, 'Electrically stable low voltage ZnO transistors with organic/inorganic nanohybrid dielectrics,' Applied Physics Letters, vol. 92, pp. 023506-023506-3, 2008. [25] C. Viana, N. Morimoto, and O. Bonnaud, 'Annealing effects in the PECVD SiO2 thin films deposited using TEOS, Ar and O2 mixture,' Microelectronics Reliability, vol. 40, pp. 613-616, 2000. [26] K.-M. Chang, W.-C. Yang, and B.-F. Hung, 'Low-Temperature Poly-Si Thin-Film Transistor with a N2O-Plasma ONO Multilayer Gate Dielectric,' Electrochemical and solid-state letters, vol. 7, pp. G148-G150, 2004. [27] A. Ohtomo, S. Takagi, K. Tamura, T. Makino, Y. Segawa, H. Koinuma, et al., 'Photo-irresponsive thin-film transistor with MgxZn1-xO channel,' Japanese journal of applied physics, vol. 45, pp. L694-L696, 2006. [28] C.-Y. Tsay, H.-C. Cheng, M.-C. Wang, P.-Y. Lee, C.-F. Chen, and C.-K. Lin, 'Performance of sol–gel deposited Zn 1− x MgxO films used as active channel layer for thin-film transistors,' Surface and Coatings Technology, vol. 202, pp. 1323-1328, 2007. [29] H. Wu, J. Liang, G. Jin, Y. Lao, and T. Xu, 'Transparent thin-film transistors using ZnMgO as dielectrics and channel,' Electron Devices, IEEE Transactions on, vol. 54, pp. 2856-2859, 2007. [30] G. H. Kim, W. H. Jeong, B. Du Ahn, H. S. Shin, H. J. Kim, H. J. Kim, et al., 'Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors,' Applied Physics Letters, vol. 96, pp. 163506-163506-3, 2010. [31] C.-J. Ku, Z. Duan, P. I. Reyes, Y. Lu, Y. Xu, C.-L. Hsueh, et al., 'Effects of Mg on the electrical characteristics and thermal stability of MgxZn1− xO thin film transistors,' Applied Physics Letters, vol. 98, p. 123511, 2011. [32] H.-C. Chiu, H.-C. Wang, C.-K. Lin, C.-W. Chiu, J. S. Fu, K.-P. Hsueh, et al., 'Low Frequency Noise Analysis of Top-Gate MgZnO Thin-Film Transistor with High-κ ZrO2 Gate Insulator,' Electrochemical and Solid-State Letters, vol. 14, pp. H385-H388, 2011. [33] H.-C. Chiu, H.-C. Wang, C.-K. Lin, H.-L. Kao, J. S. Fu, and K.-P. Hsueh, 'High Breakdown Voltage Enhancement-Mode MgxZn1-xO Thin-Film Transistor Using CF4 Plasma Treatment,' Electrochemical and Solid-State Letters, vol. 15, pp. H20-H22, 2011. [34] H. ℃Huang, F. Liu, J. Sun, J. Zhao, Z. Hu, Z. Li, et al., 'Effect of MgO buffer layer thickness on the electrical properties of MgZnO thin film transistors fabricated by plasma assisted molecular beam epitaxy,' Applied Surface Science, vol. 257, pp. 10721-10724, 2011. [35] C.-H. Li, Y.-S. Tsai, and J. Z. Chen, 'Negative bias temperature instability of Rf-sputtered Mg0. 05Zn0. 95O thin film transistors with MgO gate dielectrics,' Semiconductor Science and Technology, vol. 26, p. 105007, 2011. [36] Y.-S. Tsai and J.-Z. Chen, 'Positive Gate-Bias Temperature Stability of RF-Sputtered Mg0.05Zn0.95O Active-Layer Thin-Film Transistors,' Electron Devices, IEEE Transactions on, vol. 59, pp. 151-158, 2012. [37] Y.-S. Tsai, C.-H. Li, I. Chiu, H.-A. Chin, I. Cheng, and J. Z. Chen, 'Effects of drain-bias and ambient on hump formation in the transfer curves of positively gate-biased MgZnO thin film transistors,' Thin Solid Films, vol. 529, pp. 360-363, 2013. [38] 張. 蕭宏(Hong Xiao)原著 ; 羅正忠, '半導體製程技術導論,' 台灣培生教育出版, pp. 269-271, 2002. [39] 施. 黃調元譯, '半導體元件物理與製作技術,' 國立交通大學出版社, 2002. [40] 羅吉宗, '薄膜科技與應用,' 全華科技圖書股份有限公司, p. Chap 7, 2005. [41] http://www.dowcorning.com/content/etronics/etronicschem/etronics_newcvd _tutorial3.asp. [42] 白木靖寬/吉田真史, '薄膜工程,' 全華科技圖書出版股份有限公司, 2006. [43] K. Aumaille, C. Vallee, A. Granier, A. Goullet, F. Gaboriau, and G. Turban, 'A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor,' Thin Solid Films, vol. 359, pp. 188-196, 2000. [44] S. Kurosawa, B.-G. Choi, J.-W. Park, H. Aizawa, K.-B. Shim, and K. Yamamoto, 'Synthesis and characterization of plasma-polymerized hexamethyldisiloxane films,' Thin solid films, vol. 506, pp. 176-179, 2006. [45] Y. Sawada, S. Ogawa, and M. Kogoma, 'Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge,' Journal of Physics D: Applied Physics, vol. 28, p. 1661, 1995. [46] D. Trunec, Z. Navratil, P. Stahel, L. Zajičkova, V. Buršikova, and J. Cech, 'Deposition of thin organosilicon polymer films in atmospheric pressure glow discharge,' Journal of Physics D: Applied Physics, vol. 37, p. 2112, 2004. [47] D. S. Wavhal, J. Zhang, M. L. Steen, and E. R. Fisher, 'Investigation of gas phase species and deposition of SiO2 films from hmdso/O2 plasmas,' Plasma Processes and Polymers, vol. 3, pp. 276-287, 2006. [48] 'http://www.engr.uky.edu/~cense/equipment/sputtering.html.' [49] 'http://wwwold.ece.utep.edu/research/webedl/cdte/Fabrication/.' [50] M. J. Powell, 'The physics of amorphous-silicon thin-film transistors,' Electron Devices, IEEE Transactions on, vol. 36, pp. 2753-2763, 1989. [51] D. Hong, G. Yerubandi, H. Chiang, M. Spiegelberg, and J. Wager, 'Electrical modeling of thin-film transistors,' Critical Reviews in Solid State and Materials Sciences, vol. 33, pp. 101-132, 2008. [52] J.-S. Park, 'The annealing effect on properties of ZnO thin film transistors with Ti/Pt source-drain contact,' Journal of electroceramics, vol. 25, pp. 145-149, 2010. [53] T. Kamiya, K. Nomura, and H. Hosono, 'Present status of amorphous In–Ga–Zn–O thin-film transistors,' Science and Technology of Advanced Materials, vol. 11, p. 044305, 2010. [54] J. M. H. A. J. Moulson, 'Electroceramics,' Chapman and hall, London, 1990. [55] 林振華, '電子材料,' 全華科技圖書股份有限公司, 2001. [56] 'http://electrochem.cwru.edu/encycl/art-d01-dielectrics.htm.' [57] H. Garcia, H. Castan, E. Perez, S. Duenas, L. Bailon, T. Blanquart, et al., 'Influence of growth and annealing temperatures on the electrical properties of Nb2O5-based MIM capacitors,' Semiconductor Science and Technology, vol. 28, p. 055005, 2013. [58] D. K. Schroder, 'Semiconductor material and device characterization 2nd edition,' Wiley, New York, 1998. [59] L. Zhang, J. Li, X. Zhang, X. Jiang, and Z. Zhang, 'High performance ZnO-thin-film transistor with TaO dielectrics fabricated at room temperature,' Applied Physics Letters, vol. 95, p. 072112, 2009. [60] K. Piskorski and H. Przewlocki, 'The methods to determine flat-band voltage V< inf> FB</inf> in semiconductor of a MOS structure,' in MIPRO, 2010 Proceedings of the 33rd International Convention, 2010, pp. 37-42. [61] M. Goujon, T. Belmonte, and G. Henrion, 'OES and FTIR diagnostics of HMDSO/O2 gas mixtures for SiOx deposition assisted by RF plasma,' Surface and Coatings Technology, vol. 188, pp. 756-761, 2004. [62] J. Theil, J. Brace, and R. Knoll, 'Carbon content of silicon oxide films deposited by room temperature plasma enhanced chemical vapor deposition of hexamethyldisiloxane and oxygen,' Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 12, pp. 1365-1370, 1994. [63] A. Hozumi and O. Takai, 'Preparation of ultra water-repellent films by microwave plasma-enhanced CVD,' Thin Solid Films, vol. 303, pp. 222-225, 1997. [64] R. J. Good and L. Girifalco, 'A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data,' The Journal of Physical Chemistry, vol. 64, pp. 561-565, 1960. [65] 'http://cmrf.research.uiowa.edu/scanning-electron-microscopy.' [66] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, 'Growth of native oxide on a silicon surface,' Journal of Applied Physics, vol. 68, pp. 1272-1281, 1990. [67] A. Courtot-Descharles, F. Pires, P. Paillet, and J. Leray, 'Density functional theory applied to the calculation of dielectric constant of low-k materials,' Microelectronics Reliability, vol. 39, pp. 279-284, 1999. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60303 | - |
dc.description.abstract | 本論文針對六甲基二矽氧烷與氧氣於電漿輔助化學氣相沉積系統中沉積的有機無機混成薄膜進行了薄膜製程條件及材料性質的研究,同時進一步應用在氧化鎂鋅薄膜電晶體的閘極介電層,並評估薄膜電晶體的特性。
實驗上首先利用傅立葉轉換紅外線光譜儀來檢視薄膜成分隨製程參數的變化,同時運用水接觸角來佐證紅外線光譜儀的結果。在傅立葉轉換紅外線光譜中發現,隨著O2/HMDSO流量比例的提高,介電薄膜中的無機Si-O-Si鍵結量會跟著提升,使薄膜趨向於無機的二氧化矽,而製程功率提高也同樣提增加材料中的Si-O-Si的鍵結量,所得到的結果與水接觸角的分析相符合。同時為了瞭解薄膜的電性,文中利用平面電容三明治電極結構來分析不同薄膜成分下的漏電流密度與相對介電常數,以獲得相關的電性參數。漏電流會隨著薄膜製程的O2/HMDSO流量比例的增加而下降。隨著鍍膜功率的上升,漏電流也隨之降低。隨著O2/HMDSO流量比例上升及鍍膜功率的上升,介電常數則隨之下降,使薄膜介電常數趨近於無機二氧化矽的相對介電常數值3.9。 所製備的有機無機混成薄膜應用於氧化鎂鋅下閘極薄膜電晶體之閘極介電層。可以發現隨著O2/HMDSO流量比例的提高,薄膜電晶體的暗電流則被有效的降低,進而拉高電流開關比,同時臨界電壓也會跟著增加。當電晶體的介電層厚度為350 nm,電晶體W/L=80 m/15 μm,開關比則到達2.6×10^5,臨界電壓約為9.07伏特,而閘極漏電流也低於5.8×10^(-10)安培。我們也嘗試了三種不同的方式來沉積介電薄膜並觀察電晶體的表現,分別為升溫法、分段鍍膜法以及漸變鍍膜法,由於高溫與電漿轟擊對於薄膜會有所傷害,因此前兩種方式效果較差,而漸變鍍膜法所鍍出的介電薄膜則具有較低的閘極漏電流。 | zh_TW |
dc.description.abstract | This thesis reports the experimental results of organic-inorganic hybrid dielectric layer deposited from HMDSO and oxygen by Plasma Enhanced Chemical Vapor Deposition. The films deposited under various O2/HMDSO flow ratios and power are examined and applied to the gate dielectric layer of bottom gate MgZnO thin film transistors (TFTs).
Fourier transform infrared spectroscopy (FTIR) is used to analyze the bonding characteristics of the films. The portion of Si-O-Si bonding increases with the increases of the O2/HMDSO flow ratio and the deposition power. The results are confirmed by contact angle experiments. As the deposition power and O2/HMDSO flow ratio increase, the films become more inorganic-like and the leakage current is also lowered. The relative dielectric constant also approaches 3.9 of SiO2. The organic-inorganic hybrid films are also used as the gate dielectrics for bottom gate MgZnO thin film transistors. MgZnO TFTs with dielectric films deposited at relatively high power exhibit poor transfer characteristics. With our current deposition apparatus, the best dielectrics for MgZnO TFTs are deposited at O2/HMDSO=40 and 45 W rf-power. For a TFT of W/L=80 μm/15 μm and a gate dielectric thickness of 350 nm, the on/off current ratio can reach 2.6× 10^5; the threshold voltage is around 9.07 V; the leakage current is below 5.8×10^(-10)A. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:15:09Z (GMT). No. of bitstreams: 1 ntu-102-R00941076-1.pdf: 2588912 bytes, checksum: 3bca92ddf8fcb126002bb761f3793c8b (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄
致謝………………………………………………………………………………….I 摘要……………………………………………………………………………….....II Abstract……………………………………………………………………………...III 目錄………………………………………………………………………………….V 圖目錄…………………………………………………………………………...…VIII 表目錄………………………………………………………………………………..XI 第一章 緒論………………………………………………………………………….1 1.1 薄膜電晶體簡介…………………………………………………………..1 1.2 氧化矽絕緣層簡介………………………………………………………..2 1.3 研究動機…………..………………………………………………………3 1.4 章節介紹…………..………………………………………………………4 第二章 文獻回顧及理論基礎……………………………………………………...5 2.1 有機無機混成與推疊絕緣層發展………………………………………...5 2.2 氧化鎂鋅薄膜電晶體文獻回顧…………………………………………...8 2.3 電漿輔助化學氣相沉積………………………………………………….11 2.3.1 電漿介紹…………………………………….……………………….11 2.3.2 電漿輔助化學氣相沉積原理………………………………………..11 2.3.3 前驅氣體介紹………………………………………………………..13 2.4 薄膜成長儀器與原理…………………………………………………….14 2.4.1 濺鍍沉積……………………………….…………………………….14 2.4.2 電子束蒸鍍…………………………………………………………..15 2.5 薄膜電晶體概論………………………………………………………….16 2.5.1 元件結構介紹………………………………………………………..16 2.5.2 操作原理……………………………………………………………..16 2.5.3 薄膜電晶體重要參數………………………………………………..18 2.6 閘極絕緣層電性介紹…………………………………………………….22 2.6.1 介電效應…………………………………………….……………….22 2.6.2 漏電流密度…………………………………………………………..25 2.6.3 介面陷阱電荷………………………………………………………..26 2.6.4 平帶電壓與氧化層捕獲電荷密度…………………………………..28 第三章 研究方法…………………………………………………………………..29 3.1 閘極絕緣層薄膜製備……………………………………...……………..29 3.1.1 基板清洗……………………………………………………………..29 3.1.2 鍍膜機台介紹………………………………………………………..30 3.2 絕緣層薄膜及電晶體製作…………………………………………...…..31 3.2.1 薄膜製作方法………………………….………………………...…..31 3.2.2 MIM/MISM製作方法…………………………………………...…..31 3.2.3 微影製程…………………………………………...………………...32 3.2.4 薄膜電晶體製作方法…………………………………………...…...34 3.3 薄膜性質分析儀器………………………………………...…...………...36 3.3.1 傅立葉轉換紅外線光譜儀…………………………...…...………....36 3.3.2 水接觸角…………………………...…...………................................36 3.3.3 掃描式電子顯微鏡…………………………...…...………………....37 第四章 結果與討論…………………………...…...………......................................38 4.1 薄膜成分與表面性質分析…………………………...…...……...............38 4.1.1 傅立葉轉換紅外線光譜儀……………………...…...….…...............38 4.1.2 水接觸角………………………...…...………....................................42 4.1.3 介電薄膜表面形態………………………...…...………....................45 4.1.4 介電薄膜穿透光譜……………………………………………….….47 4.2 薄膜介電性質與電性分析……………………...…...………...................49 4.2.1 介電常數……………………...…...………........................................49 4.2.2 平帶電壓與氧化層缺陷密度………………………………………..54 4.2.3 漏電流密度…………………...…...………........................................60 4.2.4 薄膜電晶體電性分析…………………...…...………........................63 第五章 結論與未來展望…………………...…...………........................................90 參考文獻…………………...…...………....................................................................91 | |
dc.language.iso | zh-TW | |
dc.title | 以六甲基二矽氧烷與氧氣輝光放電製備之閘極絕緣層於氧化鎂鋅薄膜電晶體之應用 | zh_TW |
dc.title | Dielectric Thin Films Deposited from HMDSO and Oxygen by Glow Discharge for MgZnO TFT Application | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳建彰(Jian-Zhang Chen),吳育任(Yuh-Renn Wu) | |
dc.subject.keyword | 氧化鎂鋅,薄膜電晶體,六甲基二矽氧烷,閘極介電層,透明氧化物, | zh_TW |
dc.subject.keyword | MgZnO,Thin-Film Transistor,HMDSO,Gate dielectric,Transparent oside, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。