Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60302
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君(I-Chun Cheng)
dc.contributor.authorI-Feng Luen
dc.contributor.author呂奕鋒zh_TW
dc.date.accessioned2021-06-16T10:15:08Z-
dc.date.available2015-08-01
dc.date.copyright2013-08-27
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citation[1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono,
'Room-temperature fabrication of transparent flexible thin-film transistors using
amorphous oxide semiconductors,' Nature, vol. 432, pp. 488-492, 2004.
[2] T. Osada, T. Kugler, P. Broms, and W. Salaneck, 'Polymer-based light-emitting devices:
investigations on the role of the indium—tin oxide (ITO) electrode,' Synthetic metals, vol.
96, pp. 77-80, 1998.
[3] Y.-S. Kim, K. Liang, K.-Y. Law, and D. G. Whitten, 'An investigation of photocurrent
generation by squaraine aggregates in monolayer-modified tin oxide (SnO2) electrodes,'
The Journal of Physical Chemistry, vol. 98, pp. 984-988, 1994.
[4] B.-Y. Oh, Y.-H. Kim, H.-J. Lee, B.-Y. Kim, H.-G. Park, J.-W. Han, et al.,
'High-performance ZnO thin-film transistor fabricated by atomic layer deposition,'
Semiconductor Science and Technology, vol. 26, p. 085007, 2011.
[5] C.-H. Li, Y.-S. Tsai, and J. Z. Chen, 'Negative bias temperature instability of Rf-sputtered
Mg0. 05Zn0. 95O thin film transistors with MgO gate dielectrics,' Semiconductor Science
and Technology, vol. 26, p. 105007, 2011.
[6] J. K. Jeong, H. Won Yang, J. H. Jeong, Y.-G. Mo, and H. D. Kim, 'Origin of threshold
voltage instability in indium-gallium-zinc oxide thin film transistors,' Applied Physics
Letters, vol. 93, pp. 123508-123508-3, 2008.
[7] K. Nomura, T. Aoki, K. Nakamura, T. Kamiya, T. Nakanishi, T. Hasegawa, et al.,
'Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer
hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9,
9-dioctylfluorene-co-bithiophene) thin-film transistors,' Applied Physics Letters, vol. 96,
pp. 263509-263509-3, 2010.
[8] V. Avrutin, D. J. Silversmith, and H. Morkoc, 'Doping asymmetry problem in ZnO: current
status and outlook,' Proceedings of the IEEE, vol. 98, pp. 1269-1280, 2010.
[9] E. Kennard and E. Dieterich, 'An effect of light upon the contact potential of selenium and
cuprous oxide,' Physical Review, vol. 9, p. 58, 1917.
[10] L. Grondahl, 'Theories of a new solid junction rectifier,' Science, vol. 64, pp. 306-308,
1926.
[11] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, 'P-type
electrical conduction in transparent thin films of CuAlO2,' Nature, vol. 389, pp. 939-942,
1997.
[12] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, et al., 'Epitaxial growth of
transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed
laser deposition,' Journal of Applied Physics, vol. 89, p. 1790, 2001.
[13] T. Mine, H. Yanagi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, 'Control of carrier
concentration and surface flattening of CuGaO2 epitaxial films for a p-channel transparent
transistor,' Thin Solid Films, vol. 516, pp. 5790-5794, 2008.
[14] H. Ohta, K.-i. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, 'Current
69
injection emission from a transparent p–n junction composed of p-SrCu2O2/n-ZnO,'
Applied Physics Letters, vol. 77, pp. 475-477, 2000.
[15] H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, and H. Hosono, 'Fabrication of all oxide
transparent p–n homojunction using bipolar CuInO2 semiconducting oxide with delafossite
structure,' Solid state communications, vol. 121, pp. 15-17, 2001.
[16] P. Carcia, R. McLean, M. Reilly, and G. Nunes, 'Transparent ZnO thin-film transistor
fabricated by rf magnetron sputtering,' Applied Physics Letters, vol. 82, pp. 1117-1119,
2003.
[17] K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, 'Epitaxial
growth of high mobility Cu2O thin films and application to p-channel thin film transistor,'
Applied Physics Letters, vol. 93, pp. 202107-202107-3, 2008.
[18] X. Zou, G. Fang, L. Yuan, M. Li, W. Guan, and X. Zhao, 'Top-Gate Low-Threshold
Voltage p-Cu2O Thin-Film Transistor Grown on SiO2/Si Substrate Using a High-k HfON
Gate Dielectric,' Electron Device Letters, IEEE, vol. 31, pp. 827-829, 2010.
[19] Z. Yao, B. He, L. Zhang, C. Zhuang, T. Ng, S. Liu, et al., 'Energy band engineering and
controlled p‐type conductivity of CuAlO2 thin films by nonisovalent Cu‐O alloying,'
Applied Physics Letters, vol. 100, pp. 062102-062102-4, 2012.
[20] S.-Y. Sung, S.-Y. Kim, K.-M. Jo, J.-H. Lee, J.-J. Kim, S.-G. Kim, et al., 'Fabrication of
p-channel thin-film transistors using CuO active layers deposited at low temperature,'
Applied Physics Letters, vol. 97, pp. 222109-222109-3, 2010.
[21] E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. a. Gonc﹐ alves, et al.,
'Thin-film transistors based on p-type Cu2O thin films produced at room temperature,'
Applied physics letters, vol. 96, p. 192102, 2010.
[22] Y. Wang, X. Jiang, and Y. Xia, 'A solution-phase, precursor route to polycrystalline SnO2
nanowires that can be used for gas sensing under ambient conditions,' Journal of the
American Chemical Society, vol. 125, pp. 16176-16177, 2003.
[23] N. Barsan, M. Schweizer-Berberich, and W. Gopel, 'Fundamental and practical aspects in
the design of nanoscaled SnO2 gas sensors: a status report,' Fresenius' journal of analytical
chemistry, vol. 365, pp. 287-304, 1999.
[24] B. Orel, U. Lavrenčič‐Štangar, and K. Kalcher, 'Electrochemical and Structural Properties
of SnO2 and Sb: SnO2 Transparent Electrodes with Mixed Electronically Conductive and
Ion‐Storage Characteristics,' Journal of the Electrochemical Society, vol. 141, pp.
L127-L130, 1994.
[25] N. Li, C. R. Martin, and B. Scrosati, 'A High‐Rate, High‐Capacity, Nanostructured Tin
Oxide Electrode,' Electrochemical and solid-state letters, vol. 3, pp. 316-318, 2000.
[26] G. Beensh-Marchwicka, L. Krol-Stȩpniewska, and A. Misiuk, 'Influence of annealing on
the phase composition, transmission and resistivity of SnOx thin films,' Thin solid films,
vol. 113, pp. 215-224, 1984.
[27] X. Pan and L. Fu, 'Tin Oxide Thin Films Grown on the (1012) Sapphire Substrate,' Journal
of electroceramics, vol. 7, pp. 35-46, 2001.
[28] C.-W. Ou, Z. Y. Ho, Y.-C. Chuang, S.-S. Cheng, M.-C. Wu, K.-C. Ho, et al., 'Anomalous
70
p-channel amorphous oxide transistors based on tin oxide and their complementary
circuits,' Applied Physics Letters, vol. 92, pp. 122113-122113-3, 2008.
[29] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, et al., 'p-channel
thin-film transistor using p-type oxide semiconductor, SnO,' Applied Physics Letters, vol.
93, pp. 032113-032113-3, 2008.
[30] E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. K. Park, C. S. Hwang, et al.,
'Transparent p-type SnO thin film transistors produced by reactive rf magnetron sputtering
followed by low temperature annealing,' Applied Physics Letters, vol. 97, p. 052105, 2010.
[31] L. Y. Liang, Z. M. Liu, H. T. Cao, Z. Yu, Y. Y. Shi, A. H. Chen, et al., 'Phase and Optical
Characterizations of Annealed SnO Thin Films and Their p-Type TFT Application,'
Journal of the Electrochemical Society, vol. 157, p. H598, 2010.
[32] H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, et al., 'Sputtering
formation of p-type SnO thin-film transistors on glass toward oxide complimentary
circuits,' Applied Physics Letters, vol. 97, p. 072111, 2010.
[33] K. Nomura, T. Kamiya, and H. Hosono, 'Ambipolar Oxide Thin‐Film Transistor,'
Advanced Materials, 2011.
[34] K. Okamura, B. Nasr, R. A. Brand, and H. Hahn, 'Solution-processed oxide semiconductor
SnO in p-channel thin-film transistors,' Journal of Materials Chemistry, 2012.
[35] L. Yan Liang, H. Tao Cao, X. Bo Chen, Z. Min Liu, F. Zhuge, H. Luo, et al., 'Ambipolar
inverters using SnO thin-film transistors with balanced electron and hole mobilities,'
Applied Physics Letters, vol. 100, pp. 263502-263502-5, 2012.
[36] P.-C. Hsu, W.-C. Chen, Y.-T. Tsai, Y.-C. Kung, C.-H. Chang, C.-J. Hsu, et al., 'Fabrication
of p-Type SnO Thin-Film Transistors by Sputtering with Practical Metal Electrodes,'
Japanese Journal of Applied Physics, vol. 52, 2013.
[37] A. Togo, F. Oba, I. Tanaka, and K. Tatsumi, 'First-principles calculations of native defects
in tin monoxide,' Physical Review B, vol. 74, p. 195128, 2006.
[38] D. S. Ginley, Handbook of transparent conductors: Springer, 2010.
[39] H. Hosono, Y. Ogo, H. Yanagi, and T. Kamiya, 'Bipolar Conduction in SnO Thin Films,'
Electrochemical and Solid-State Letters, vol. 14, p. H13, 2011.
[40] H. Hosono, 'Recent progress in transparent oxide semiconductors: Materials and device
application,' Thin Solid Films, vol. 515, pp. 6000-6014, 2007.
[41] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, et al., 'Tin monoxide
as an s‐orbital‐based p‐type oxide semiconductor: Electronic structures and TFT
application,' physica status solidi (a), vol. 206, pp. 2187-2191, 2009.
[42] J. A. Caraveo-Frescas, P. K. Nayak, H. A. Al-Jawhari, D. B. Granato, U.
Schwingenschlogl, and H. N. Alshareef, 'Record Mobility in Transparent p-Type Tin
Monoxide Films and Devices by Phase Engineering,' ACS nano, 2013.
[43] S. Cahen, N. David, J. Fiorani, A. Maıtre, and M. Vilasi, 'Thermodynamic modelling of the
O–Sn system,' Thermochimica acta, vol. 403, pp. 275-285, 2003.
71
[44] http://www.speedtech.com.tw/web/html/prod_solu.asp?solu=46&psolu=42&lang=cht.
[45] http://npl-web.stanford.edu/archive/energy/micro-fuel-cell/sofc/electrode/ald/.
[46] http://www.cleanroom.byu.edu/metal.phtml.
[47] http://en.wikipedia.org/wiki/Bragg's_law.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60302-
dc.description.abstract本論文討論在不同生長條件下,氧化亞錫薄膜其晶相與結晶度、透光度、表
面粗糙度與導電性的分析。並且以氧化亞錫薄膜作為主動層製作p 型透明薄膜電
晶體。
氧化亞錫的薄膜薄膜濺鍍製程主要以錫為靶材,並調控氧分壓進行氧化膜中
氧量的控制。在薄膜晶相與結晶度分析中,發現當隨濺鍍時氧通量比例提升,或
濺鍍壓力增加時,薄膜中的氧原子比例亦會提升,薄膜中的錫金屬相隨之減少,
但過多的氧量會使薄膜中的氧化亞錫開始改變化學態形成氧化錫,使薄膜不易結
晶。進行氮氣退火時,薄膜在200℃退火具有較大的結晶晶粒,隨溫度提升晶粒
逐漸縮小。300℃以上退火溫度因高於氧化亞錫化學穩定態,結晶度明顯下降。在
光穿透率部分,氧通量增加與濺鍍壓力提升皆會使薄膜中的金屬錫含量減少而使
透光率提升,薄膜光學能隙亦從2.7 eV 開始持續隨著薄膜氧比例提升而增加,最
高可至3.45 eV,表現出錫氧化物在氧量調變下從氧化亞錫(2.7 eV)至氧化錫(3.9
eV)的轉換過程。表面型態可看出薄膜表面有明顯錫顆粒析出,並有些微結晶,隨
氧量增加錫顆粒析出減少,同時薄膜趨向平整,進入非晶相狀態。250℃以上退火
溫度因高於金屬錫熔點,薄膜表面錫顆粒有明顯增加。氧化亞錫薄膜氧比例增加
使薄膜缺乏錫更容易產生錫空缺,此外,氧化亞錫晶粒粒徑較大,使得薄膜載子
濃度與載子遷移率都逐漸提升,但過多氧量會使薄膜接近非晶相而讓導電度將急
遽降低,低溫200℃退火因氧化亞錫結晶度較高,有助於載子遷移率的提升,但
缺陷過多使載子濃度普遍偏高,300℃載子遷移率略低,但應用於電晶體主動層時
載子濃度可有效控制。
本實驗使用氧化亞錫薄膜作為主動層,成功製備出下閘極結構 p 型場效薄膜
電晶體。其電流開關比最佳可達到3.15× 103,飽和區場效遷移率在
0.153 cm2/Vs 左右。
zh_TW
dc.description.abstractWe investigated the crystallinity, optical transmittance, surface morphology and
electrical properties of tin monoxide (SnO) thin film under various deposition
conditions. The SnO films were applied to the active layers of p-type thin film
transistors.
SnO films were sputter-deposited under various O2/Ar flow ratios and sputtering
pressure without intentional heating. Higher oxygen content reduced the content of
β-Sn phase, leading to higher purity of tin monoxide. As the O2/Ar flow ratios reaches
4.38%, excessive oxygen would partially transform Sn(II)O state into tin(IV)
dioxide(SnO2). Under this circumstance, SnO phase was eliminated and the film is
turned into amorphous state. The transmittance of SnO thin film increases with
sputtering atmosphere pressure and O2/Ar ratio in sputtering atmosphere, owing to the
reduction of light-scattering caused by tin particles in SnO films. The optical band
gap (Eg) increases from 2.73 eV to 3.45 eV as the sputtering pressure increases from 1
mtorr to 4 mtorr, indicating the transformation of SnO (Eg = 2.7 eV) to SnO2 (Eg = 3.9
eV).
Nano-scale grains and scattered tin particles were observed on the surface of SnO
thin films. For higher oxygen ratio during sputtering, film surface became smoother
and less tin particles were observed on the film surface, indicating the transformation
of SnO and SnO2 into amorphous Sn-O states. In addition, more tin particles were
detected on the film surface when the post-annealing temperature is raised beyond 250
℃. This is because the metallic tin could melt and gather as nanoparticles at the
temperature over 230℃. SnO thin films were also evaluated by Hall measurement.
Higher mobility and greater carrier concentration could be achieved by raising the
oxygen content of SnO thin films. By raising the oxygen content, the grain size usually
becomes larger; more tin vacancies and oxygen interstitials were formed. But too much
oxygen content could cause the detrimental of p-type property. 200℃ post-annealed
SnO reveals better Hall mobility of 5.33 because of larger grain sizes. But
the carrier concentration was also raised such that the current could not be modulated
when the film is used as the TFT’s active layer. The carrier concentration of SnO was
reduced by a 300℃ post-annealing process. The TFT with 300℃ post-annealed SnO
active layer shows better modulation characteristics at a cost of lower hall mobility of
3 cm2/Vs.
With a deposition conditions of 3 mtorr sputtering pressure O2/Ar ratio of 3.75%
and post-annealing temperature of 300℃, we have demonstrated a bottom gate SnO
thin-film transistor with on/off ratio of 3.15× 103 and saturated field-effect mobility
of 0.153 cm2/Vs.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:15:08Z (GMT). No. of bitstreams: 1
ntu-102-R00941060-1.pdf: 5806976 bytes, checksum: 792bf7931b29cd3249fdfcfae053cb79 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
致謝 ................................................................................................................................... I
摘要.................................................................................................................................. II
Abstract............................................................................................................................III
目錄..................................................................................................................................V
表目錄..........................................................................................................................VIII
圖目錄............................................................................................................................ IX
第一章緒論 1
1.1 前言...............................................................................................................1
1.2 研究動機.......................................................................................................1
1.3 章節介紹.......................................................................................................2
第二章理論與文獻回顧 3
2.1 p 型透明金屬氧化薄膜電晶體的發展........................................................3
2.2 氧化亞錫的發展...........................................................................................4
2.2.1 氧化亞錫的結構與基本特性........................................................... 7
2.2.2 氧化亞錫的能階與缺陷................................................................... 7
2.2.3 錫-氧相圖 ...................................................................................... 10
2.3 錫氧化物薄膜電晶體的發展.....................................................................11
2.3.1 薄膜電晶體的工作原理..................................................................11
2.3.2 薄膜電晶體的特徵參數................................................................. 12
第三章製備流程與量測 14
3.1 薄膜製備儀器.............................................................................................14
3.1.1 反應式射頻磁控濺鍍機................................................................. 14
3.1.2 原子層化學氣相沉積儀................................................................. 15
3.1.3 電子束蒸鍍儀................................................................................. 16
3.2 薄膜電晶體製備流程.................................................................................17
3.2.1 主動層薄膜氧化亞錫的製備......................................................... 17
3.2.2 閘極絕緣層薄膜氧化鉿的製備..................................................... 18
VI
3.2.3 微影技術......................................................................................... 18
3.2.4 以氧化鉿薄膜作為介電層的氧化亞錫電晶體製備流程............. 20
3.2.5 以氧化矽薄膜作為介電層的氧化亞錫電晶體製備流程............. 23
3.3 薄膜氧化亞錫之成分與晶相分析.............................................................23
3.3.1 X 光繞射相鑑定儀......................................................................... 23
3.4 薄膜氧化亞錫之光穿透特性分析.............................................................24
3.4.1 紫外光/可見光光譜儀.................................................................... 24
3.5 薄膜氧化亞錫之表面型態分析.................................................................25
3.5.1 場發射掃描式電子顯微鏡............................................................. 25
3.6 薄膜氧化亞錫之電特性分析.....................................................................25
3.6.1 霍爾量測......................................................................................... 25
3.7 氧化亞錫薄膜電晶體特性量測.................................................................27
第四章結果與討論 28
4.1 不同氧通量比例之氧化亞錫薄膜薄膜特性分析.....................................28
4.1.1 成分與晶相的分析......................................................................... 28
4.1.2 光學穿透特性分析......................................................................... 30
4.1.3 表面型態分析................................................................................. 31
4.1.4 電特性分析..................................................................................... 33
4.2 不同濺鍍壓力製程之氧化亞錫薄膜變化.................................................34
4.2.1 1 mtorr 濺鍍壓力薄膜.................................................................... 35
4.2.2 2 mtorr 濺鍍壓力薄膜.................................................................... 38
4.2.3 4 mtorr 濺鍍壓力薄膜.................................................................... 42
4.3 不同退火溫度製程之氧化亞錫薄膜變化.................................................45
4.3.1 200℃氮氣退火薄膜....................................................................... 46
4.3.2 250℃氮氣退火薄膜....................................................................... 50
4.3.3 350℃氮氣退火薄膜....................................................................... 54
4.4 綜合比較.....................................................................................................57
4.5 電晶體特性分析.........................................................................................59
4.5.1 調動氧通量比例濺鍍之薄膜主動層曲線分析............................. 59
4.5.2 不同濺鍍壓力與調動氧通量比例濺鍍之薄膜主動層曲線分析. 62
VII
4.5.3 不同退火溫度與調動氧通量比例濺鍍之薄膜主動層曲線分析. 64
4.5.4 以氧化鉿作為薄膜介電層曲線分析............................................. 66
第五章結論 67
參考資料 68
dc.language.isozh-TW
dc.subject氧化亞錫zh_TW
dc.subject薄膜電晶體zh_TW
dc.subjectsputterzh_TW
dc.subjecttin monoxidezh_TW
dc.subjectthin-film transistorszh_TW
dc.subject濺鍍zh_TW
dc.subjectthin-film transistorsen
dc.subjecttin monoxideen
dc.subjectsputteren
dc.title射頻磁控濺鍍p型氧化亞錫薄膜及場效電晶體特性之研究zh_TW
dc.titleCharacterization of RF Magnetron Sputtered p-Type SnO Thin Films and Field-Effect Transistorsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建彰(Jian-Zhang Chen),吳育任(Yuh-Renn Wu)
dc.subject.keywordthin-film transistors,tin monoxide,sputter,薄膜電晶體,氧化亞錫,濺鍍,zh_TW
dc.subject.keywordthin-film transistors,tin monoxide,sputter,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2013-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved