請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60296
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈湯龍(Tang-Long Shen) | |
dc.contributor.author | Yu-Chi Lin | en |
dc.contributor.author | 林育琦 | zh_TW |
dc.date.accessioned | 2021-06-16T10:15:02Z | - |
dc.date.available | 2016-09-02 | |
dc.date.copyright | 2013-09-02 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-19 | |
dc.identifier.citation | Bell, H. S., and Ryan, K. M. (2005). Intracellular signalling and cancer: complex pathways lead to multiple targets. Eur. J. Cancer 41, 206-215.
Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411, 355-365. Bayer, E., Goettsch, S., Mueller, J. W., Griewel, B., Guiberman, E., Mayr, L. M., and Bayer, P. (2003). Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding. J. Biol. Chem. 278, 26183-26193. Bai, T., and Luoh, S. W. (2007). GRB-7 facilitates HER-2/Neu-mediated signal transduction and tumor formation. Carcinogenesis 29, 473-479. Nencioni, A., Cea, M., Garuti, A., Passalacqua, M., Raffaghello, L., Soncini, D., Moran E., Zoppoli, G., Pistoia, V., Patrone, F., and Ballestrero, A. (2010). Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression. PLoS ONE 5:e9024 Chu, P. Y, Li, T. K., Ding, S. T., Lai, I. R., and Shen, T. L. (2010). EGF-induced Grb7 recruits and promotes Ras activity essential for the tumorigenicity of Sk-Br3 breast cancer cells. J. Biol. Chem. 285, 29279-29285. Chu, P. Y., Huang, L. Y., Hsu, C. H., Liang, C. C., Guan, J. L., Hung, T. H., Shen, T. L. (2009). Tyrosine phosphorylation of Grb7 by FAK in the regulation of cell migration, proliferation and tumorigenesis. J. Biol. Chem. 284, 20215-20226. Dougherty, M. K., Müller, J., Ritt, D. A., Zhou, M., Zhou, X. Z., Copeland, T. D., Conrads, T. P., Veenstra, T. D., Lu, K. P., and Morrison, D. K. (2005). Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215-224. Daly, R. J., Sanderson, G. M., Janes, P. W., and Sutherland, R. L. (1996). Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J. Biol. Chem. 271, 12502-12510. Daly, R. J. (1998). The Grb7 family of signalling proteins. Cell. Signal 10, 613-618. Dong, L. Q., Du, H., Porter, S. G., Kolakowski Jr, L. F., Lee, A.V., Mandarino, L. J., Fan, J., Yee, D., and Liu, F. (1997). Cloning, chromosome localization, expression, and characterization of an Src homology 2 and pleckstrin homology domain- containing insulin receptor binding protein hGrb10gamma. J. Biol. Chem. 272, 29104-29112. Pradip, D., Bouzyk, M., Dey, N., and Leyland-Jones, B. (2013). Dissecting GRB7-mediated signals for proliferation and migration in HER2 overexpressing breast tumor cells: GTP-ase rules. Am. J. Cancer Res. 3, 173-195. Eckerdt, F., Yuan, J., Saxena, K., Martin, B., Kappel, S., Lindenau, C., Kramer, A., Naumann, S., Daum, S., Fischer, G., Dikic, I., Kaufmann, M., and Strebhardt, K. (2005). Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J. Biol. Chem. 280, 36575-36583. Fiddes, R. J., Campbell, D. H., Janes, P. W., Sivertsen, S. P., Sasaki, H., Wallasch, C., and Daly, R. J. (1998). Analysis of Grb7 Recruitment by Heregulin-activated erbB Receptors Reveals a Novel Target Selectivity for erbB3. J. Biol. Chem. 273, 7717-7724. Giricz, O., Calvo, V., Pero, S. C., Krag, D. N., Sparano, J. A., and Kenny, P. A. (2011). GRB7 is required for triple-negative breast cancer cell invasion and survival. Breast Cancer Res. Treat. 133, 607-615. Han, D. C., Shen, T. L., and Guan, J. L. (2001). The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions. Oncogene 20, 6315-6321. Han, D. C., Shen, T. L., and Guan, J. L. (2000). Role of Grb7 targeting to focal contacts and its phosphorylation by focal adhesion kinase in regulation of cell migration. J Biol. Chem. 275, 28911-28917. Han, D. C., Shen, T. L., Miao, H., Wang, B., and Guan, J.L. (2002). EphB1 Associates with Grb7 and Regulates Cell Migration. J. Biol. Chem. 277, 45655-45661. He, W., Rose, D.W., Olefsky, J. M., and Gustafson, T. A. (1998). Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J. Biol. Chem. 273, 6860-6867. Janes, P. W., Lackmann, M., Church, W. B., Sanderson, G. M., Sutherland, R. L., and Daly, R.J. (1997). Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7. J. Biol. Chem. 272, 8490-8497. Kiel, C.,Yus, E., and Serrano, L. (2010). Engineering signal transduction pathways. Cell 140, 33-47. Kay, B. K., Williamson, M.P., and Sudol, M. (2000). The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231-241. Kao, J., and Pollack, J. R. (2006). RNA interference‐based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes. Genes, Chromosomes and Cancer 45, 761-769. Kasus-Jacobi, A., Béréziat, V., Perdereau, D., Girard, J., and Burnol, A. F. (2000). Evidence for an interaction between the insulin receptor and Grb7. A role for two of its binding domains, PIR and SH2. Oncogene 19, 2052-2059. Kishi, T., Sasaki, H., Akiyama, N., Ishizuka, T., Sakamoto, H., Aizawa, S., Sugimura, T., and Terada, M. (1997). Molecular cloning of human GRB-7 co-amplified with CAB1 and c-ERBB-2 in primary gastric cancer. Biochem. Biophys. Res. Commun. 232, 5-9. Lemmon, M. A., Ferguson, K. M., and Abrams, C. S. (2002). Pleckstrin homology domains and the cytoskeleton. FEBS Lett. 513, 71-76. Lyons, R. J., Deane, R., Lynch, D. K., Ye, Z. S., Sanderson, G. M., Eyre, H. J., Sutherland, G. R., Daly, R. J. (2001). Identification of a novel human tankyrase through its interaction with the adaptor protein Grb14. J. Biol. Chem. 276, 17172-17180. Lucas-Fernández, E., García-Palmero, I, Villalobo, A. (2008). Genomic organization and control of the grb7 gene family. Curr. Genomics. 9, 60-68. Li, H., Sánchez-Torres, J., del Carpio, A. F., Nogales-González, A., Molina-Ortiz, P., Moreno, M. J., Török, K., and Villalobo, A. (2005). The adaptor Grb7 is a novel calmodulin-binding protein: functional implications of the interaction of calmodulin with Grb7. Oncogene 24, 4206-4219. Liou, Y. C, Zhou, X. Z, and Lu, K. P. (2011). Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem. Sci. 36, 501-514. Liao, Y., Wei, Y., Zhou, X., Yang, J. Y., Dai, C., Chen, Y. J., Agarwal, N. K., Sarbassov, D., Shi, D., Yu, D., and Hung, M. C. (2009). Peptidyl-prolyl cis/trans isomerase Pin1 is critical for the regulation of PKB/Akt stability and activation phosphorylation. Oncogene 28, 2436-2445. Lu, K. P., Liou, Y. C, and Vincent, I. (2003). Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. BioEssays 25, 174-181. Lu, P. J., Zhou, X. Z, Shen, M., and Lu, K. P.. (1999). Function of WW Domains as Phosphoserine- or Phosphothreonine- Binding Modules. Science 283, 1325-1328. Lemmon, M. A., and Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell 141, 1117-1134. Lu, K. P, Hanes, S. D., and Hunter, T. (1996). A human peptidyl–prolyl isomerase essential for regulation of mitosis. Nature 380, 544-547. Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J.P., and Lu, K. P. (2002). Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J. Biol. Chem. 277, 2381-2384. Liou, Y. C., Ryo, A., Huang, H. K., Lu, P. J., Bronson, R., Fujimori, F., Uchida, T., Hunter, T., and Lu, K. P. (2002). Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl. Acad. Sci. 99, 1335-1340. Lam, P. B, Burga, L. N, Wu, B. P, Hofstatter, E.W, Lu, K. P., and Wulf, G. M. (2008). Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability. Mol. Cancer 7, 91. Lu, K. P., Liou, Y. C, and Zhou, X. Z. (2002). Pinning down proline-directed phosphorylation signaling. Trends Cell Biol.12, 164-172. Margolis, B. (1994). The GRB family of SH2 domain proteins. Prog. Biophys. Mol. Biol. 62, 223-244. McLean, G. W., Carragher, N.O., Avizienyte, E., Evans, J., Brunton, V. G., and Frame, M. C. (2005). The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat. Rev. Cancer 5, 505-515. Manser, J., Roonprapunt, C., and Margolis, B. (1997). C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev. Biol. 184, 150-164. Margolis, B., Silvennoinen, O., Comoglio, F., Roonprapunt, C., Skolnik, E., Ullrich, A., and Schlessinger, J. (1992). High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with Src homology 2 domains. Proc. Natl. Acad. Sci. 89, 8894-8898. Min, S. H., Lau, A.W., Lee, T. H., Inuzuka, H., Wei, S., Huang, P., Shaik, S., Lee, D. Y., Finn, G., Balastik, M., Chen, C. H., Luo, M., Tron, A. E., Decaprio, J. A., Zhou, X. Z., Wei, W., and Lu, K. P.(2012). Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol. Cell 46, 771-783. Nicole Tsang, Y. H., Wu, X. W., Lim, J. S., Wee Ong, C., Salto-Tellez, M., Ito, K., Ito, Y., and Chen, L. F. (2012). Prolyl isomerase Pin1 downregulates tumor suppressor RUNX3 in breast cancer. Oncogene 32, 1488-1496. Nadler, Y., González, A.M., Camp, R. L., Rimm, D. L., Kluger, H. M., Kluger, Y. (2009). Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann. Oncol. 21, 466-473. Ooi, J., Yajnik, V., Immanuel, D., Gordon, M., Moskow, J. J., Buchberg, A. M., and Margolis, B. (1995). The cloning of Grb10 reveals a new family of SH2 domain proteins. Oncogene 10, 1621-1630. Pero, S. C., Daly, R. J., and Krag, D. N. (2003). Grb7-based molecular therapeutics in cancer. Expert. Rev. Mol. Med. 2, 1-11. Pawson, T., and Scott, J. D. (1997). Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075-2080. Ponting, C. P., and Benjamin, D. R. (1996). A novel family of ras-binding domains. Trends Biochem. Sci. 21, 422-425. Peterson, T. A., Benallie, R. L., Bradford, A. M., Pias, S. C., Yazzie, J., Lor, S. N., Haulsee, Z. M., Park, C. K., Johnson, D. L., Rohrschneider, L. R., Spuches, A., and Lyons, B. A. (2012). Dimerization in the Grb7 Protein. J. Mol. Recognit. 25, 427-434. Pawson, T. (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191-203. Pero, S. C., Shukla, G. S., Cookson, M. M., Flemer Jr., S., and Krag, D. N. (2007). Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. Br. J. Cancer. 96, 1520-1525. Porter, C. J., Matthews, J. M, Mackay, J. P., Pursglove, S. E., Schmidberger, J. W., Leedman, P. J., Pero, S. C., Krag, D. N., Wilce, M. C., and Wilce, J. A. (2007). Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Struct. Biol. 7, 58. Reilly, J. F., Mickey, G., and Maher, P. A. (2000). Association of fibroblast growth factor receptor 1 with the adaptor protein Grb14. Characterization of a new receptor binding partner. J. Biol. Chem. 275, 7771-7778. Ryo, A., Liou, Y. C., Wulf, G., Nakamura, M., Lee, S. W., and Lu, K. P. (2002). PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell. Biol. 22, 5281-5295. Rosen, M. K., Yamazaki, T., Gish, G. D., Kay, C. M., Pawson, T., Kay, L. E. (1995). Direct demonstration of an intramolecular SH2-phosphotyrosine interaction in the Crk protein. Nature. 374, 477-479. Ranganathan, R., Lu, K. P., Hunter, T., and Noel, J. P. (1997). Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89, 875-886. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C., and Lu, K. P. (2001). Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat. Cell Biol. 3, 793-801. Daly, R. J., Sanderson, G. M., Janes, P. W., and Sutherland, R. L. (1996). Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J. Bio. Chem. 271, 12502-12510. Stein, D., Wu, J., Fuqua, S. A., Roonprapunt, C., Yajnik, V., D'Eustachio, P., Moskow, J. J., Buchberg, A. M., Osborne, C. K., and Margolis, B. (1994). The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 13, 1331-1340. Shen, T. L., Han, D. C., and Guan, J. L. (2002). Association of Grb7 with phosphoinositides and its role in the regulation of cell migration. J. Biol. Chem. 277, 29069-29077. Shen, T. L., and Guan., J. L. (2004). Grb7 in intracellular signaling and its role in cell regulation. Front. Biosci. 9, 192-200. Siamakpour-Reihani, S., T. A., Peterson, A. M., Bradford, H. J., Argiros, L. L., Haas, S. N., Lor, Z. M., Haulsee, A. M., Spuches, D. L., Johnson, L. R., Rohrschneider, C. B., Shuster, and Lyons, B. A. (2009). The cell migration protein Grb7 associates with transcriptional regulator FHL2 in a Grb7 phosphorylation -dependent manner. J. Mol. Recognit. 22, 9-17. Schmid, F. X. (1995). Protein folding: Prolyl isomerases join the fold. Curr. Biol. 5, 993-994. Siamakpour-Reihani, S., T. A., Peterson, A. M., Bradford, H. J., Argiros, L. L., Haas, S. N., Lor, Z. M., Haulsee, A. M., Spuches, D. L., Johnson, L. R., Rohrschneider, C. B., Shuster, and Lyons, B. A. (2011). Grb7 binds to Hax-1 and undergoes an intramolecular domain association that offers a model for Grb7 regulation. J. Mol. Recognit. 24, 314-321. Scharf, P. J., Witney, J., Daly, R., and Lyons, B. A. (2004). Solution structure of the human Grb14–SH2 domain and comparison with the structures of the human Grb7–SH2/erbB2 peptide complex and human Grb10–SH2 domain. Protein Sci. 13, 2541-2546. Stein, E. G., Gustafson, T. A., and Hubbard, S. R. (2001). The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF1 receptors. FEBS Lett. 493, 106-111. Traxler, P. (2003). Tyrosine kinases as targets in cancer therapy - successes and failures. Expert. Opin. Ther. Targets 7, 215-234. Tanaka, S., Mori, M., Akiyoshi, T., Tanaka, Y., Mafune, K., Wands, J. R., and Sugimachi, K. (1998). A novel variant of human Grb7 is associated with invasive esophageal carcinoma. J. Clin. Invest. 102, 821-827. Tsai, N.P., Tsui, Y. C., Pintar, J. E., Loh, H. H., Wei, L. N. (2010). Kappa opioid receptor contributes to EGF-stimulated neurite extension in development. Pro. Natl. Acad. Sci. 107, 3216-3221. Tanaka, S., Mori, M., Akiyoshi, T., Tanaka, Y., Mafune, K., Wands, J. R., and Sugimachi, K. (1997). Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma. Cancer Res. 57, 28-31. Vermeulen, K., Van-Bockstaele, D. R., and Berneman, Z. N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. Vlahovic, G., and Crawford, J. (2003). Activation of tyrosine kinases in cancer. Oncologist. 8, 531-538. Vermeulen, K., Van-Bockstaele, D. R., and Berneman, Z. N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell prolif. 36, 131-149. Winkler, K. E., Swenson, K. I., Kornbluth, S., and Means, A. R. (2000). Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644-1647. Whitfield, M. L., George, L. K., Grant, G. D., and Perou, C. M. (2006). Common markers of proliferation. Nat. Rev. Cancer 6, 99-106. Wulf, G., Finn, G., Suizu, F., and Lu, K. P. (2005). Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat. Cell. Biol. 7, 435-441. Wulf, G. M, Liou, Y. C., Ryo, A., Lee, S. W., and Lu, K. P. (2002). Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976-47979. Wang, Y., Chan, D. W., Liu, V. W., Chiu, P., and Ngan, H. Y. (2010). Differential functions of growth factor receptor-bound protein 7 (GRB7) and its variant GRB7v in ovarian carcinogenesis. Clin. Cancer Res.16, 2529-2539. Wulf, G. M., Ryo, A., Wulf, G. G., Lee, S. W., Niu, T., Petkova, V., and Lu, K. P. (2001). Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J. 20, 3459-3472. Wulf, G., Garg, P., Liou, Y. C., Iglehart, D., and Lu, K. P. (2004). Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23, 3397-3407. Winkler, K. E., Swenson, K. I., Kornbluth, S., Means, A. R. (2000). Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644-1647. Xu, Y. X., and Manley, J. L. (2007). Pin1 modulates RNA polymerase II activity during the transcription cycle. Genes Dev. 21, 2950-2962. You, H., Zheng, H., Murray, S. A., Yu, Q., Uchida, T., Fan, D., Xiao, Z. X. (2002). IGF‐1 induces Pin1 expression in promoting cell cycle S‐phase entry. J. Cell Biochem. 84, 211-216. Yaffe, M. B. and Elia, A. E. (2001). Phosphoserine/threonine-binding domains. Curr. Opin. Cell Biol. 13, 131-138. Yeh, E. S. and Means., A. R. (2007). PIN1, the cell cycle and cancer. Nat. Rev. Cancer. 7, 381-388. Yaffe, M. B. (2002). Phosphotyrosine-binding domains in signal transduction. Nat. Rev. Mol. Cell. Biol.. 3, 177-186. Yaffe, M. B. et al. (1997). Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957-1960. Yeh, E. S., Lew, B. O., and Means, A. R. (2006). The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability. J. Biol. Chem. 281, 241-251. Yi, P., Wu, R. C., Sandquist, J., Wong, J., Tsai, S. Y., Tsai, M. J., Means, A. R., and O'Malley, B. W. (2005). Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol. Cell. Biol. 25, 9687-9699. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., Hahn, W. C., Stukenberg, P. T., Shenolikar, S., Uchida, T., Counter, C. M., Nevins, J. R., Means, A. R., and Sears, R. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell. Biol. 6, 308-318. Zheng, Y., Xia, Y., Hawke, D., Halle, M., Tremblay, M. L., Gao, X., Zhou, X. Z., Aldape, K., Cobb, M. H., Xie, K., He, J., and Lu Z. (2009). FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol. Cell 35, 11-25. Zhou, X. Z., Lu, P. J., Wulf, G., and Lu, K. P. (1999). Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell. Mol. Life Sci. 56, 788-806. Zhou, X. Z., Kops, O., Werner, A., Lu, P. J., Shen, M., Stoller, G., Küllertz, G., Stark, M., Fischer, G., and Lu, K.P. (2000). Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873-883. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60296 | - |
dc.description.abstract | Growth factor receptor bound protein-7 (Grb7) 為一不具有酵素活性的銜接蛋白(adaptor),屬Grb family的一員,其具有數個功能性區域可與許多訊息分子產生交互作用而活化多重之訊息傳遞路徑以調控細胞功能。由目前研究中指出Grb7基因在某些乳癌細胞中會與Her2/erbB2 ( human epidermal growth factor 2 )有共同大量表現(co-amplification)的現象,並可能參與癌症的轉移(metastasis)、侵襲(invasive)及腫瘤生成(tumorigenesis)的過程。為了進一步探討Grb7所參與之訊息調控,先前實驗室由酵母菌雙雜合分析(yeast two-hybrid assay)中篩選會與Grb7進行交互作用之下游蛋白,發現Grb7與Pin1蛋白( peptidyl-prolyl cis/trans isomerase )間具有大量結合之現象。Pin1為一可針對磷酸化受質蛋白之特定pSer/Thr motif進行cis/trans異構化以調控蛋白的穩定、活化及構形。因此本研究嘗試進一步探討Grb7和Pin1的交互作用在細胞訊息傳遞上所可能扮演之功能性角色,藉由共免疫沉降和定點突變分析證實Pin1和Grb7具有直接之交互作用,且確認Grb7上Pin1可能之主要結合位置為pSer194-Pro motif。另外,藉由lentiviral-based gene silencing技術,發現在Pin1基因表現抑制的情況下,Grb7的蛋白表現量有提高之趨勢,進一步透過即時定量RT-PCR及cycloheximide pulse-chase分析中顯示Pin1可能在磷酸化蛋白之後修飾機制中透過與Grb7之pSer194-Pro motif結合而負向調控Grb7蛋白的穩定性。為進一步闡明Pin1在參與Grb7所媒介之訊息傳遞路徑,我們也期望找出參與兩者間交互作用之相關訊息分子以及Pin1蛋白在Grb7介導之細胞功能上所扮演之調控角色。藉此,希望對Grb7和Pin1蛋白間之研究可協助我們對癌症生成的過程及訊息路徑有更進一步的了解並提供相關疾病未來治療策略的研究和應用。 | zh_TW |
dc.description.abstract | Growth factor receptor bound protein-7 (Grb7) is a multi-domain adaptor protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways to regulate various cellular functions. The Grb7 gene is often co-amplified with EGF or HER2/erbB2 receptors to potentiate metastasis, invasion and tumorigenesis of breast cancers. Thus, Grb7 is an adverse prognostic marker in breast cancers. Previously, in a yeast two-hybrid screening, we found a novel interaction between Pin1 and Grb7. Pin1 is a peptidyl-prolyl cis/trans isomerase capable of isomerizing the specific pSer/Thr-Pro bonds and such conformational change leading to the alterations in protein functionality, stability, and/or intracellular localization. In this study, we attempt to investigate the molecular mechanism and functional effects of the interaction between Grb7 and Pin1. By co-immunoprecipitation and mutational analysis, we found that Pin1 enables directly interacting with Grb7 through the phospho-Ser 194-Pro motif on Grb7 and the WW domain of Pin1. Moreover, knockdown of Pin1 expression through lentiviral-mediated gene silencing could retain elevated Grb7 expression. Furthermore, utilizing cycloheximide pulse-chase assay and quantitative RT-PCR analysis, we conclude that Pin1 could negatively regulate Grb7 protein stability at the post-translational level. In addition, the Grb7-Pin1 interaction could modulate cell proliferation but not cell migration or cell viability. As the result of this research, we expect that the molecular mechanisms of the interaction between Grb7 and Pin1 may be beneficial for potential applications on anti-cancer therapies since both molecules have been indicated on tumorigenecity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:15:02Z (GMT). No. of bitstreams: 1 ntu-102-R00633020-1.pdf: 5096028 bytes, checksum: f41bf83649c6220f239fb243604b0150 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要…………………………………………………………………v
Abstract…………………………………………………………………vi Introduction……………………………………………………………1 Grb7………………………………………………………………………1 Grb7 structure and function……………………………………… 2 Phosphorylation, dimerization and localization………………7 Grb7-mediated signaling and cellular function……………… 9 Grb7 in cancer……………………………………………………… 12 Pin1…………………………………………………………………… 13 Pin1 structure and function………………………………………14 Pin1 in cell cycle and cancer……………………………………16 Pin1 in pathological disease…………………………………… 18 Phosphorylation-specific prolyl isomerization mechanism………………………………………………………………19 Materials and Methods………………………………………………22 Reagents……………………………………………………………… 22 Construction of expression vectors…………………………… 23 Cell culture………………………………………………………… 25 Lentiviral production and infection……………………………25 Cell transfection and generation of stable cell pools……26 Immunoprecipitation and western blotting analysis…………27 Recombinant protein expression and purification……………28 Glutathione-S-transferase pull-down assay……………………29 Cycloheximide pulse-chase experiment………………………… 30 RNA extraction and reverse-transcription PCR……………… 31 Boyden chamber assay……………………………………………… 32 Bromodeoxyuridine incorporation assay…………………………33 Cell viability assay……………………………………………… 34 Results…………………………………………………………………35 Pin1 can directly interact with Grb7………………………… 35 Phosphorylation of Grb7 on the Ser194-Pro motif may be critical for the interaction between Grb7 and Pin1……… 36 Expression of Pin1 inversely correlated with Grb7 expression…………………………………………………………… 37 Pin1 reduces the stability of Grb7…………………………… 39 Pin1 may involve in the post-translational regulation of Grb7…………………………………………………………………… 40 Grb7-mediated downstream signaling…………………………… 41 Effects of Grb7 serine phosphorylation deficient mutants in tumor cell migration, proliferation, and cell viability…43 Discussion…………………………………………………………… 45 Figures and Figure legends……………………………………… 49 References…………………………………………………………… 65 | |
dc.language.iso | en | |
dc.title | Pin1蛋白在參與Grb7媒介之訊息傳遞上所扮演的調控角色 | zh_TW |
dc.title | Regulatory role of Pin1 in Grb7-mediated cell signaling | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李士傑(Shyh-Jye Lee),詹迺立(Nei-Li Chan),丁詩同(Shih-Torng Ding),李財坤(Tsai-Kun Li),呂佩融(Pei-Jung Lu) | |
dc.subject.keyword | growth factor receptor-bound protein-7 (Grb7),peptidyl-prolyl cis/trans isomerase (Pin1),定點突變分析,乳癌, | zh_TW |
dc.subject.keyword | growth factor receptor-bound protein-7 (Grb7),peptidyl-prolyl cis/trans isomerase (Pin1),mutational analysis,breast cancer, | en |
dc.relation.page | 81 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 4.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。