請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60273完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明 | |
| dc.contributor.author | Chun-Ta Lin | en |
| dc.contributor.author | 林均達 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:14:37Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | [1] 中華民國公共衛生年報,行政院衛生署, 2012
[2] C.D.C Leading Causes of Death (Data are for the U.S.) http://www.cdc.gov/nchs/fastats/lcod.htm [3] Jiantao Pu*, Joseph K. Leader, Bin Zheng, Friedrich Knollmann, Carl Fuhrman, Frank C. Sciurba, and David, “A Computational Geometry Approach to Automated Pulmonary Fissure Segmentation in CT Examinations”, IEEE Transactions on Medical Imaging, vol. 28, no. 5, May2009. [4] A+醫學百科 http://cht.a-hospital.com/ [5] James C. Ross, Ra’ul San, Jos’e Est’epar, “Automatic Lung Lobe Segmentation Using Particles,Thin Plate Splines, and Maximum a Posteriori Estimation”, MICCAI 2010, Part III, LNCS 6363, pp. 163–171, 2010. [6] B. N. Raasch, E. W. Carsky, E. J. Lane, J. P. O’Callaghan, and E. R. Heitzman, “Radiographic anatomy of the interlobar fissures: A study of 100 specimens,” Am. J. Roentgenol., vol. 138, no. 6, pp. 1043–1049, 1982. [7] Buelow T, Wiemker R, Blaffert T, Lorenz C, and Renisch S, “Automatic extraction of the pulmonary artery tree from multi-slice CT data”, in SPIE Medical Imaging, Apr. 2005, vol. 5746, pp. 730–740. [8] Zhou X, Hayashi T, Hara T, Fujita H, Yokoyama R, Kiryu T, and Hoshi H, “Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images”, Computerized Medical Imaging and Graphics 30, pp. 299–313, 2006. [9] Udupa JK, Samarasekera S. Fuzzy Connectedness and Object Definition, “Theory, Algorithms, and Applications in Image Segmentation”,Graphics Models and Image Processing.1996;58:246–261. [10] Herman GT, Carvalho BM,“Multiseeded Segmentation Using Fuzzy Connectedness”, Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2001;23:460–474. [11] Soumik Ukil and Joseph M. Reinhardt, “Anatomy-guided lung lobe segmentation in X-Ray CT images,” IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 202-214 , 2009. [12] J. M. Kuhnigk, H. K. Hahn, M. Hindennach, V. Dicken, S. Krass, and H. O. Peitgen, “Lung lobe segmentation by anatomy-guided 3-D watershed transform,” in Proc. SPIE Conf. Med. Imag., 2003, vol. 5032, pp. 1482–1490. [13] D. Selle, “Analyse von Gefaessstrukturen in medizinischen Schichtdatensaetzen fuer die computergestuetzte Operationsplanung,” Shaker, Aachen, 1999. [14] X. Zhou, T. Hayashi, T. Hara, and H. Fujita, “Automatic recognition of lung lobes and fissures from multi-slice CT images,” in Proc. SPIE Conf. Med. Imag., San Diego, CA, 2004, vol. 5370, pp. 1629–1633. [15] M. Kubo, N. Niki, S. Nakagawa, K. Eguchi, M. Kaneko, N. Moriyama, H. Omatsu, R. Kakinuma, and N. Yamaguchi, “Extraction algorithm of pulmonary fissures from thin-section CT images based on linear feature detector method,” IEEE Trans. Nucl. Sci., vol. 46, no. 6, pp. 2128–2133, 1999. [16] J. Wang, M. Betke, and J. P. Ko, “Pulmonary fissure segmentation on CT,” Med. Image Anal., vol. 10, no. 4, pp. 530–547, 2006. [17] J. Wang, M. Betke, and J. P. Ko, “Shape-based curve growing model and adaptive regularization for pulmonary fissure segmentation in CT,” in Lecture Notes in Computer Science, Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer-Verlag, 2003, vol. 3216, pp. 541–548. [18] Li Zhang,“Atlas-Driven Lung Lobe Segmentation in Volumetric X-Ray CT Image,” , IEEE Transactions on Medical Imaging [19] Lin-Yu Tseng, ”Automatic fissure detection in CT images based on the genetic algorithm”, in IEEE. ICMLC., 2010 [20] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Vessel enhancement filtering”, Proc. Medical Image Computing and Computer-Assisted Intervention, pp.130 -137 1998 [21] Zhiqiong Wang, Xianfeng Meng, Yue Zhao, “Lung Lobe Segmentation Based on HRCT Data,” IEEE [22] R. Wiemker T, T. Bulow “Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data,” International Congress Series 1281 (2005) 1121–1126. [23] Tom Doel, Tahreema N. Matin, Fergus Gleeson, David Gavaghan, Vicente Grau “Pulmonary lobe segmentation from CT images using fissureness, airways, vessels and multilevel B-splines,” ISBI 2012: 1491-1494 [24] Xiao Chen He, Nelson H. C. Yung,“Corner detector based on global and local curvature properties”, Optical Engineering, May 2008. [25] Jiehui Zhang, Zhongshi He, Xuequan Huang, “Automatic 3D Anatomy-based Mediastinum Segmentation Method in CT Images”, International Journal of Digital Content Technology and its Applications. Volume 5, Number 7, July 2011 [26] Samuel G. Armato III, PhD , William F, “Automated Lung Segmentation for Thoracic CT:Impact on Computer-Aided Diagnosis”, Computer-Assisted Radiology and Surgery [27] Bianca Lassen, Jan-Martin Kuhnigk, Ola Friman, Stefan Krass, Heinz-Otto Peitgen, “Automatic Segmentation of Lung Lobe in CT Images based on Fissures, Vessels, and Bronchi”, ISBI 2010 [28] R. C. Gonzalez and R.E. Woods, Digital Image Processing 2nd Edition, Prentice Hall, New Jersey, 2002. [29] Bookstein FL, “Principal warps: Thin-plate splines and the decomposition of deformations”, I.E.E.E. Transactions on Pattern Analysis and Machine Intelligence . PAMI-11:567–585,1989. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60273 | - |
| dc.description.abstract | 近年來國人之十大死因之中,肺部疾病高居第五名及第四名,且在國人十大死因之中的第一名---惡性腫瘤之中,肺部是最容易發病的位置之一,故胸腔疾病的診斷及治療成為近年重要的課題之一。多切片電腦斷層掃描(MSCT)是目前非侵入性的胸腔病影像學檢查中,最為重要且有效的影像方法之一,利用此方法,我們建立起電腦自動化胸腔診斷(Computer-aided Diagnosis, CAD)系統,幫助醫師做術前的規劃。在慢性阻塞性肺病(Chronic obstructive pulmonary disease, COPD)當中,肺葉分割的資訊對肺氣腫的評估能提供有效幫助,而在肺部疾病的分類上也是相當重要的分類依據,故本研究將開發一個新且優良的自動化的肺裂分割演算法,並藉由肺裂資訊來達到切割肺葉的結果,幫助CAD系統更加完善。
本篇演算法主要分成兩大步驟:第一步驟為肺葉擷取,演算法是利用海森矩陣(Hessian Matrix)之特徵向量資訊,配合區域成長法(Region Growing)的概念,將具有板狀特徵的結構給擷取出來。藉由成長多個大板塊後,將屬於肺裂的板塊合併、不屬於肺裂之雜訊排除,達成肺裂擷取的成果。第二步驟為肺葉分割,由於肺葉普遍具有肺裂不全(斷裂、破碎)的現象,我們將利用模型似合(Model Fitting)工具將此問題排除,本研究是採用薄板坊樣演算法(TPS)來達成此目的。 本研究之影像皆由台大醫院影像醫學部提供之多切面胸腔電腦斷層影像(MSCT),並採用三十二組含有不同品質與肺氣腫病例之電腦斷層掃描影像來進行實驗,將結果與正確答案比較過後,本演算法在平均準確率達到89%,此結果顯示本演算法可以在不同影像品質與肺氣腫之影像上成功且準確地分割肺葉邊界,在與商用軟體VIDA比較後也顯示本演算法具有較平滑、正確、且連續的肺葉邊界。 | zh_TW |
| dc.description.abstract | Lung diseases has been highly ranked as forth and fifth major cause of death in Taiwan recently, and in the most lethal disease-nodule, lung is the most easiest position to fall ill, that is, the treatment and diagnosis of pulmonary diseases become one of the most important issues today. Multi-slice computed tomography(MSCT) is one of the most important and efficient methods in the field of noninvasive imaging examination of pulmonary diseases. We can establish Computer-aided Diagnosis system to help doctors planning before surgery through using this method. Lobe-based visual assessment of volumetric CT in COPD may be used to evaluate the severity of emphysema, meanwhile, it also plays an important role in the classification of lung diseases. Therefore, this research is devoted to develop a new, superior and automatic segmentation of fissure algorithm, and make CAD system more perfect.
The algorithm can be separated into two steps. First step is extraction of lobe. The extraction algorithm is based on the eigenvector of Hessian Matrix and the concept of Region Growing, so it can extract the structure with platy feature. Then, the size of plate becomes more and bigger, so it is easier to combine the plate which belongs to fissure and eliminate the noise which doesn’t belong to fissure. Finally, extraction of fissure can accomplish. The second step is segmentation of lobe. Because incomplete fissure can be generally find in lobe, we have to get rid of this problem by using Model Fitting Method, and this research chose thin plate spline (TPS) to reach this goal. All the images of this research came from MSCT which were provided by National Taiwan University Hospital Department of Medical Imaging. This research took 32 images of pulmonary computed tomography within different qualities to experiment. Compare to the right answer, the rate of accuracy of this algorithm reach 89% on average. It show that this algorithm can successfully and accurately segmentation of boundary of lobe in the different qualities of images and the images of emphysema. Besides, compare to the business software VIDA, it also show that this algorithm can calculate more smooth, correct and continuous boundary of lobe. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:14:37Z (GMT). No. of bitstreams: 1 ntu-102-R00548034-1.pdf: 7856490 bytes, checksum: b3b23998a5fca50c9d5d3bd8adc3c038 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 ....................................................................................................................................... I
ABSTRACT ...................................................................................................................................... II 第一章 緒論 .............................................................................................................................. 1 1.1研究背景 ................................................................................................................................... 1 1.2 肺葉及肺裂介紹 ................................................................................................................................ 2 1.3 研究動機與目的 ................................................................................................................................ 6 第二章 文獻探討 ............................................................................................................................. 9 2.1間接式演算法(INDIRECT)...................................................................................................................... 9 2.2直接式演算法(DIRECT) ...................................................................................................................... 13 第三章 研究方法與材料 ................................................................................................................ 19 3.1研究材料 .......................................................................................................................................... 19 3.2演算法流程 ...................................................................................................................................... 19 3.2.1肺區擷取(Lung extraction)流程: ......................................................................................... 20 3.2.2肺裂擷取(Fissure extraction)流程: ...................................................................................... 21 3.2.3肺葉分割(Lobe segmentation) 流程: ................................................................................. 22 3.3肺區擷取演算法 .............................................................................................................................. 22 3.3.1影像強度閥值設定:............................................................................................................... 23 3.3.2扣除氣管資訊: ...................................................................................................................... 25 3.3.3補洞並平滑表面:................................................................................................................... 28 3.3.4尋找肺區內外緣:................................................................................................................... 29 3.3.5加入肋骨資訊(圖3.21-b): ..................................................................................................... 31 3.3.6可調整式rolling ball演算法與分割結果: ............................................................................ 32 3.4肺裂擷取演算法 .............................................................................................................................. 33 3.3.1 板狀強化濾波器: .................................................................................................................. 34 3.3.2去除雜訊:............................................................................................................................... 39 3.3.3平板區域成長法: ..................................................................................................................... 40 3.3.4擷取肺裂組織: ......................................................................................................................... 44 3.4肺葉分割演算法 .............................................................................................................................. 45 3.4.1薄板仿樣分析法(Thin-Plate Spline, TPS): ................................................................................ 45 3.4.2 肺裂分類(右肺): ...................................................................................................................... 50 第四章 結果與討論 ....................................................................................................................... 56 4.1 肺裂分割比較 .................................................................................................................................. 59 4.2 肺葉分割結果之比較 ...................................................................................................................... 64 4.2.1與正確答案之比較: ............................................................................................................... 64 4.2.2與VIDA之比較: ..................................................................................................................... 66 4.3 結論與未來展望 .............................................................................................................................. 69 REFERENCE........................................................................................................................................... 71 附錄A-肺裂、肺葉分割結果 .............................................................................................................. 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肺裂擷取 | zh_TW |
| dc.subject | 肺葉分割 | zh_TW |
| dc.subject | 平板成長法 | zh_TW |
| dc.subject | 海森矩陣 | zh_TW |
| dc.subject | 薄板枋樣法 | zh_TW |
| dc.subject | fissure extraction | en |
| dc.subject | lobe segmentation | en |
| dc.subject | plate growing | en |
| dc.subject | hessian matrix | en |
| dc.subject | TPS | en |
| dc.title | 肺部電腦斷層掃描之肺葉分割研究 | zh_TW |
| dc.title | Pulmonary Lobe segmentation on CT image | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張允中 | |
| dc.contributor.oralexamcommittee | 花凱龍,陳介誌 | |
| dc.subject.keyword | 肺裂擷取,肺葉分割,平板成長法,海森矩陣,薄板枋樣法, | zh_TW |
| dc.subject.keyword | fissure extraction,lobe segmentation,plate growing,hessian matrix,TPS, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
