請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60270完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 久米朋宣(Tomonori Kume) | |
| dc.contributor.author | Mei-Li Chen | en |
| dc.contributor.author | 陳美里 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:14:34Z | - |
| dc.date.available | 2013-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | 陳耀德、葉青峰、劉美娟、吳敏如、羅勻謙、鄧振華、朱慧君、馮哲明、陳俐如、陳凱欣、王巧萍、夏禹九、E. Matzner、張世杰 (2006) 台灣山地霧林帶的水分與養分循環研究。28(3):171-177.
邓东周、范志平、王红、孙学凯、高俊刚、曾德慧 (2008) 林木蒸腾作用测定和 估算方法。生态学杂志。27(6):1051-1058 Baker, J. M., C. H. M. van Bavel (1987) Measurement of mass flow of water in the stems of herbaceous plants. Plant, Cell and Environment 10: 777-782. Baldocchi, D.D. (1997) Flux footprints under forest canopies. Boundary Layer Meteorology 85: 273-292. Barrett, D. J., T. J. Hatton, J.E. Ash, M.C. Ball (1996) Transpiration by trees from contrasting forest types. Australian Journal of Botany 44: 249–263. Clearwater, M. J., F. C. Meinzer, J.L. Andrade, G. Goldstein, N.M. Holbrook (1999)Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology 19: 681–687. Delzon, S., M. Sartore, A. Granier, D. Loustau (2004) Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology 24(11):1285-1293. Foster, P. (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55(1): 73-106. Garcia-Santos G. (2012) Transpiration in a sub-tropical ridge-top cloud forest. Journal of Hydrology 462-463: 42-52. Granier A. (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology 3: 309-319. Granier, A., P. Biron, N. Breda, J.Y. Pontailler, B. Saugier (1996) Transpiration of trees and forest stands: Short and long-term monitoring using sapflow methods. Global Change Biology 2(3):265-274. Horst T. W., J. C. Weil (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Boundary-Layer Meteorology 59(3): 279-296 Hutley L.B., D. Doley, D.J. Yates, A. Boonsaner (1997) Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog. Australian Journal of Botany 45(2): 311-329. Jimenez, M.S., J. Cermak, J. Kucera, D. Morales (1996) Laurel forests in Tenerife, Canary Islands: the annual cource of sap flow in Laurus trees and stand. Journal of Hydrology 183: 307-321. Jones, H. G. (1992) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press. Kao S. C., K. Tomonori, H. Komatsu, W. L. Liang (2013) Spatial and temporal variations in rainfall characteristics in mountainous and lowland areas in Taiwan. Hydrological Processes. Lin C. T., H. H. Chen, K. Tomonori, C. R. Chiou (2010) Comparison of potential water supply and demand in Taiwan. Water International 35(2): 165-176. McJannet D, P. Fitch, M. Disher , J. Wallace (2007) Measurements of transpiration in four tropical rainforest types of north Queensland, Australia. Hydrological Processes 21: 3549-3564. Moore G. W., B. J. Bond, J. A. Jones, F. C. Meinzer (2010) Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years. Trees 24:165–174. Munoz-Villers L.E. (2008) Efecto del cambio en el uso de suelo sobre la dinamica hidrologica y calidad de agua en el tropico humedo del centro de Veracruz, Mexico. Ph.D. Thesis. Universidad Autonoma Metropolitana, Mexico D.F., Mexico. Availabe at:<http://tesiuami.izt.uam.mx/uam/aspuam/presentatesis.php?recno=14248&docs=UAMI14248.PDF> Oishi, A.C., R. Oren, P.C. Stoy (2008) Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology 148(11):1719-1732. Pataki, D.E., R. Oren (2003) Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Advances in Water Resources 26:1267–1278. Paw U, K.T., Baldocchi, D., Meyers, T.P., Wilson, K.B. (2000) Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology 97(3): 487–511. Peramaki, M. (2005) A physical analysis of sap flow dynamics in trees. Ph.D. Thesis. University of Helsinki, 50 p. Sakuratani T. (1981) A heat balance method for measuring water flux in the stem of intact plants. Journal of Agricultural Meteorology 37: 9-17. Smith, D.M., S.J. Allen, (1996) Measurement of sap flow in plant stems. Journal of Experimental Botany 47: 1833–1844. Steinberg S.L., C.H.M. van Bavel, M.J. McFarland (1989) A gauge to measure mass flow rate of sap in stems and trunks of woody plants. Journal of the American Society for Horticultural Science 114: 466-472. Steinberg S.L., C.H.M. van Bavel, M.J. McFarland (1990b) Improved sap flow gauge for woody and herbaceous plants. Agronomy Journal 82: 851-854. Swanson R.H., D.W.A. Whitfield (1981) A numerical-analysis of heat pulse velocity theory and practice. Journal of Experimental Botany 32: 221-239. Swanson R.H. (1994) Significant historical developments in thermal methods for measuring sap flow in trees. Agricultural and Forest Meteorology 72: 113-132. Tateishi, M., T. Kumagai, Y. Utsumi, T. Umebayashi, Y. Shiiba, K. Inoue, K. Kaji, K.Cho, K. Otsuki. (2008) Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees 22(1):23-30. Tseng, H. (2011) Transpiration Estimates and Spatial and Temporal Variability of Sap Flow in a Japanese Cedar Plantation in Sitou, Central Taiwan. Master Thesis. National Taiwan University, 74 p. Tsuruta, K., T. Kume, H. Komatsu, N. Higashi, T. Umebayashi, T. Kumagai, K.Otsuki. 2010. Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research 15(6):398-403. Van Kanten R, P. Vaast (2006) Transpiration of Arabica coffee and associated shade tree species in sub-optimal, low-attitude conditions of Costa Rica. Agroforestry Systems 67: 187-202. Wilson, K.B., D.D. Baldocchi, (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology 100: 1–18. Wilson, K.B., P.J. Mulholland, D.D. Baldocchi, S.D. Wullschleger (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology 106(2): 153–168. Wullschleger, S.D., F.C. Meinzer, R.A. Vertessy (1998) A review of whole-plant water use studies in trees. Tree Physiology 18: 499–512. Wullschleger, S.D., P.J. Hanson, D.E. Todd (2000a) Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecology and Management. in press. Wullschleger, S.D., K.B. Wilson, P.J. Hanson (2000b) Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agricultural and Forest Meteorology 104: 157–168. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60270 | - |
| dc.description.abstract | 本研究探討在臺灣中部柳杉林的蒸散特性趨勢。樹液流測量為一項良好的方法用來測量森林的蒸散量,但有報告指出經過一段長時間,利用熱擴散法探針之量測法可能會因為樹木的生長、傷害或是其他水流途徑的改變減少量測的能力。因此,本研究在位於臺灣中部的臺大溪頭實驗林的柳杉人工林中實施樹液流測量,試圖探討樹液流的長期特性。為了達到目的,首先從兩個方面了解單棵樹規模樹液流的季節變化: 1)水蒸氣壓差(vapor pressure deficit)的影響。2)其他氣候因子(氣溫及土壤水分)的影響。其次,從三個面向瞭解林分規模的蒸散量: 3)樹液流是否會受到長期測量的影響而造成表現力下降。4)估算林分規模的蒸散量並了解其季節變異。5)與其他地區比較年蒸散量。研究結果顯示樹液流速會隨著VPD的增加而增加並於VPD大約0.5 kPa時漸趨穩定,且在穩定期的樹液流速會隨著季節變化。總體來說,夏天的數值是最高的,而冬天是最低的。比較一整年的變異幅度,則可發現內部的樹液流速(2-4公分)並不如外部明顯(0-2公分)。從結果來看,樹液流速會因為長期插探針的影響而稍微削弱其表現力。而樹液流除了受到VPD影響外,也和溫度及土壤水分含量有關,且溫度比起土壤水分含量對於季節性的影響可以說較為明顯。另外,我們也發現每棵樹對於季節變異反應的個體差異。林分蒸散量的部分,在約莫夏季六至九月份間及春季四到五月的蒸散量較大,相對地,在三月較少,而十一月中旬至十二月則更少,林分蒸散的季節變異幾乎與該季節的VPD高度相關。最後,雖然在差不多的氣候條件,在溪頭人工柳杉林的年蒸散量明顯比其他地區的雲霧林來得低。 | zh_TW |
| dc.description.abstract | This study was conducted to clarify seasonal trends of sap flow with total amount of annual transpiration rate in a Japanese Cedar plantation, Sitou NTU experimental forest, in central Taiwan. To this aim, first, this study examined seasonal changes in tree-scale sap flow in terms of two aspects: 1) the effect of VPD and 2) the effects of other meteorological elements (air temperature and soil water content). Second, this study examined stand-scale transpiration (Et) in terms of three aspects: 3) the effects of reduction in sap flow due to annual sap flow sensor installation on Et estimates 4) clarifying seasonal variation in Et (5) characterizing from the comparison with those of other literatures.
The sap flow measurements were carried out at sapwood depth of 0-2 cm and 2-4 cm in 19 individuals through 2010 September to 2011 August. This study found the sap flow density mostly increased with increases in VPD and tended to the plateau when VPD exceeded about 0.5 kPa, and the sap flow density at the plateau varied with seasons. Generally, the values (sap flow density at the VPD=0.5kPa) were the highest in summer and lowest in winter. Comparing the range of variation in the relationships between VPD and sap flow density, we can see that inner sap flow (2-4 cm) is not obvious as outer one (0-2 cm) during the studied year. Results suggested that sap flow density was slightly affected by annual sap flow sensor installation. In addition, sap flow density was affected by temperature and soil water content besides vapor pressure deficit, although the significance of the affections were different among individuals. Further, it seems temperature effects on the seasonality could be more significant than that of soil moisture in this site. At the stand-scale estimates, Et was larger during summer from June to September, as well as during spring from April to May. Conversely Et was lower during March, and very low from November to December. The seasonal variations in Et were mostly related to those of VPD. Also, we clarified that the annual Et at this site was significantly lower than those in other cloud forests. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:14:34Z (GMT). No. of bitstreams: 1 ntu-102-R00625004-1.pdf: 4538480 bytes, checksum: a3a15cc2b5a64ac38a7e054a4fc1fd08 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝.......................................................I
摘要......................................................II Abstract.................................................III 目次Table of Contents......................................IV 表目錄 Table List ..........................................VI 圖目錄 Figure List........................................VII Chapter 1 Introduction...................................10 Measuring and estimating transpiration....................11 1. Eddy covariance technique.............................12 2. Sap flow measurements..................................13 2.1. Stem heat balance method.............................14 2.2. Trunk sector heat balance method.....................16 2.3. Heat-pulse method....................................17 2.4. Thermal dissipation method...........................19 Usefulness of sap flow measurement in Taiwan..............21 Scaling up................................................22 The goal of this study....................................23 Chapter 2 Method.........................................24 Site......................................................24 Experiment plot and sample size...........................26 Biometric parameters measurement..........................26 Sap flow measurement......................................26 Measurement of meteorological factors-radiation, VPD(vapor pressure deficit), temperature and precipitation..........27 Data processing...........................................28 Calculation of sap flow density...........................28 Effect of meteorological elements on sap flow density.....29 Stand scale transpiration estimates.......................30 Chapter 3 Results and Discussion.........................31 Biometric parameters......................................31 Climatic measurements.....................................33 Seasonal variation of sap flow density in individuals.....38 1. Relationship between VPD and sap flow density.....38 2. Effects of temperature and soil water content on seasonal variations in sap flow density...................55 Effect of each factor on annual Et estimates..............61 Seasonal variation of stand-scale transpiration...........65 Comparison of Et with other cloud forests.................67 Chapter 4 Conclusions.....................................70 References................................................72 | |
| dc.language.iso | en | |
| dc.subject | 蒸發散 | zh_TW |
| dc.subject | 蒸散 | zh_TW |
| dc.subject | 樹液流測量 | zh_TW |
| dc.subject | 尺度放大 | zh_TW |
| dc.subject | 氣候 | zh_TW |
| dc.subject | scaling up | en |
| dc.subject | transpiration | en |
| dc.subject | sap flow measurement | en |
| dc.subject | Climate | en |
| dc.subject | evapotranspiration | en |
| dc.title | 臺灣溪頭柳杉人工林之樹液流特性 | zh_TW |
| dc.title | Characteristics of sap flow in a Japanese Cedar Plantation in Sitou, Central Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁偉立(Wei-Li Liang),王立志(Li-Chih Wang) | |
| dc.subject.keyword | 蒸發散,蒸散,樹液流測量,尺度放大,氣候, | zh_TW |
| dc.subject.keyword | evapotranspiration,transpiration,sap flow measurement,scaling up,Climate, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
