Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60256
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳紀聖
dc.contributor.authorSheng-Hung Yuen
dc.contributor.author游勝閎zh_TW
dc.date.accessioned2021-06-16T10:14:21Z-
dc.date.available2014-08-25
dc.date.copyright2013-08-25
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citation1. Yoshida, H., Heterogeneous Photocatalytic Conversion of Carbon Dioxide. 2011: p. 531-559.
2. Jose, D., et al., Au-TiO2 Nanocomposites and Efficient Photocatalytic Hydrogen Production under UV-Visible and Visible Light Illuminations: A Comparison of Different Crystalline Forms of TiO2. International Journal of Photoenergy, 2013. 2013: p. 1-10.
3. T. Sakata, T.K., Photosynthesis and Photocatalysis with semiconductor powders. Energy Resources through Photochemistry and Catalysis, 1983: p. 331.
4. G. Magesh, B.V., R.P. Viswanath, T.K. Varadarajan, Photocatalytic routes for chemicals. Photo/Electrochemistry & Photobiology in the Environment, Energy and Fuel, 2007: p. 1.
5. Izumi, Y., Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 2013. 257(1): p. 171-186.
6. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2010. 11(4): p. 179-209.
7. Kohno, Y., et al., Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 2001. 3(6): p. 1108-1113.
8. Kohno, Y., et al., Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Physical Chemistry Chemical Physics, 2000. 2(11): p. 2635-2639.
9. Kohno, Y., et al., Photoreduction of carbon dioxide with hydrogen over ZrO2. Chemical Communications, 1997(9): p. 841-842.
10. Teramura, K., et al., Photocatalytic reduction of CO2 to CO in the presence of H-2 or CH4 as a reductant over MgO. Journal of Physical Chemistry B, 2004. 108(1): p. 346-354.
11. Yang, X., T. Xiao, and P.P. Edwards, The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting. International Journal of Hydrogen Energy, 2011. 36(11): p. 6546-6552.
12. Galinska, A. and J. Walendziewski, Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy & Fuels, 2005. 19(3): p. 1143-1147.
13. Maeda, K. and K. Domen, Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light+. Chemistry of Materials, 2010. 22(3): p. 612-623.
14. K. Maeda, K.T., D. Lu, T. Takata, N. Saito, Y. Inoue, K. domen, Photocatalyst releasing hydrogen from water. Nature, 2006. 440: p. 295.
15. W., S., Chemistry of the Solid-Water Interface. John Wiley & Sons, 1992.
16. Linsebigler, A.L., G.Q. Lu, and J.T. Yates, Photocatalysis on Tio2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995. 95(3): p. 735-758.
17. Maeda, K., K. Teramura, and K. Domen, Development of Cocatalysts for Photocatalytic Overall Water Splitting on (Ga1−x Zn x )(N1−x O x ) Solid Solution. Catalysis Surveys from Asia, 2007. 11(4): p. 145-157.
18. Hashiguchi, H., et al., Photoresponse of GaN:ZnO Electrode on FTO under Visible Light Irradiation. Bulletin of the Chemical Society of Japan, 2009. 82(3): p. 401-407.
19. Maeda, K., et al., GaN : ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. Journal of the American Chemical Society, 2005. 127(23): p. 8286-8287.
20. Maeda, K., T. Ohno, and K. Domen, A copper and chromium based nanoparticulate oxide as a noble-metal-free cocatalyst for photocatalytic water splitting. Chemical Science, 2011. 2(7): p. 1362.
21. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010. 11(4): p. 179-209.
22. Maeda, K., et al., Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst  Relationship between Physical Properties and Photocatalytic Activity. Journal of Physical Chemistry B, 2005. 109: p. 20504-20510.
23. Maeda, K. and K. Domen, Surface nanostructures in photocatalysts for visible-light-driven water splitting. Top Curr Chem, 2011. 303: p. 95-119.
24. Maeda, K., et al., Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. Journal of Catalysis, 2006. 243(2): p. 303-308.
25. Maeda, K., et al., Photocatalyst releasing hydrogen from water. Nature, 2006. 440(7082): p. 295.
26. Kohno, Y., et al., Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology a-Chemistry, 1999. 126(1-3): p. 117-123.
27. Inoue, T., et al., Photoelectrocatalytic Reduction of Carbon-Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature, 1979. 277(5698): p. 637-638.
28. Adachi, K., K. Ohta, and T. Mizuno, Photocatalytic Reduction of Carbon-Dioxide to Hydrocarbon Using Copper-Loaded Titanium-Dioxide. Solar Energy, 1994. 53(2): p. 187-190.
29. Kaneco, S., et al., Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium. Journal of Photochemistry and Photobiology a-Chemistry, 1997. 109(1): p. 59-63.
30. Mizuno, T., et al., Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology a-Chemistry, 1996. 98(1-2): p. 87-90.
31. Yoneyama, H., Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catalysis Today, 1997. 39(3): p. 169-175.
32. Tennakone, K., Photoreduction of carbonic acid by mercury coated n-titanium dioxide. Solar Energy Materials, 1984. 10: p. 235-238.
33. Subrahmanyam, M., S. Kaneco, and N. Alonso-Vante, A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity. Applied Catalysis B: Environmental, 1999. 23: p. 169-174.
34. Ichikawa, S., Chemical Conversion of Carbon-Dioxide by Catalytic-Hydrogenation and Room-Temperature Photoelectrocatalysis. Energy Conversion and Management, 1995. 36(6-9): p. 613-616.
35. Sasirekha, N., S.J.S. Basha, and K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B-Environmental, 2006. 62(1-2): p. 169-180.
36. Praus, P., et al., CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide
Original Journal of Colloid Interface Science, 2011. 360: p. 574.
37. Cook, R.L., R.C. Macduff, and A.F. Sammells, Photoelectrochemical Carbon-Dioxide Reduction to Hydrocarbons at Ambient-Temperature and Pressure. Journal of the Electrochemical Society, 1988. 135(12): p. 3069-3070.
38. Pan, P.W. and Y.W. Chen, Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 2007. 8(10): p. 1546-1549.
39. Liou, P.Y., et al., Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy & Environmental Science, 2011. 4(4): p. 1487-1494.
40. Zhou, Y., et al., High-yield synthesis of ultrathin and uniform Bi(2)WO(6) square nanoplates benefitting from photocatalytic reduction of CO(2) into renewable hydrocarbon fuel under visible light. ACS Appl Mater Interfaces, 2011. 3(9): p. 3594-601.
41. Liu, Y., et al., Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catalysis Communications, 2009. 11(3): p. 210-213.
42. Lee, D.S., H.J. Chen, and Y.W. Chen, Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 cocatalysts. Journal of Physics and Chemistry of Solids, 2012. 73(5): p. 661-669.
43. Li, X.K., et al., Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts. Applied Catalysis a-General, 2012. 413: p. 103-108.
44. Iizuka, K., et al., Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc, 2011. 133(51): p. 20863-8.
45. Teramura, K., et al., Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A=Li, Na, K). Applied Catalysis B: Environmental, 2010. 96(3-4): p. 565-568.
46. Teramura, K., et al., Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chemical Physics Letters, 2008. 467(1-3): p. 191-194.
47. White, H. and W. Melville, The dissociation of Ammonia at high temperature. 1905.
48. Yashima, M., et al., Crystal structure and optical properties of (Ga1−xZnx)(N1−xOx) oxynitride photocatalyst (x=0.13). Chemical Physics Letters, 2005. 416(4-6): p. 225-228.
49. Maeda, K., H. Masuda, and K. Domen, Effect of electrolyte addition on activity of (Ga1−xZnx)(N1−xOx) photocatalyst for overall water splitting under visible light. Catalysis Today, 2009. 147(3-4): p. 173-178.
50. Maeda, K., K. Teramura, and K. Domen, Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light. Journal of Catalysis, 2008. 254(2): p. 198-204.
51. Wang, X., et al., Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chemical Physics Letters, 2008. 457(1-3): p. 134-136.
52. Yashima, M., et al., Experimental visualization of covalent bonds and structural disorder in a gallium zinc oxynitride photocatalyst (Ga(1-x)Znx)(N(1-x)Ox): origin of visible light absorption. Chem Commun (Camb), 2010. 46(14): p. 2379-81.
53. Maeda, K., et al., Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed Engl, 2010. 49(24): p. 4096-9.
54. Ohno, T., et al., Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc, 2012. 134(19): p. 8254-9.
55. Sun, X., et al., Preparation of (Ga1−xZnx) (N1−xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Applied Catalysis A: General, 2007. 327(1): p. 114-121.
56. McDermott, E.J., et al., Structural and Band Gap Investigation of GaN:ZnO Heterojunction Solid Solution Photocatalyst Probed by Soft X-ray Spectroscopy. The Journal of Physical Chemistry C, 2012. 116(14): p. 7694-7700.
57. Dionigi, F., et al., Suppression of the water splitting back reaction on GaN:ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a μ-reactor. Journal of Catalysis, 2012. 292: p. 26-31.
58. Cullity, B.D. and S.R. Stock, Elements of X-ray Diffraction 3rd ed. New Jersey: Prentice Hall, 2001.
59. Wendlandt, W.W. and H.G. Hecht, Reflectance Sprectroscopy. New York: Wiley, 1966.
60. Anderson, J.R. and K.C. Pratt, Introduction to Characterization and Tesing of Catalysts. Florida: Academic Press, 1985.
61. Hong, J., et al., Photocatalytic reduction of CO2: A brief review on product analysis and systematic methods developed in our group. Anal. Methods, 2013. 5: p. 1086-1097.
62. Jordan, D.E., Spectrophotometric determination of traces of formic acid and formaldehyde in effluent waters with or without preconcentration. Analytica Chimica Acta, 1980. 113(1): p. 189-194.
63. Kleeberg, U. and W. Klinger, Sensitive formaldehyde determination with NASH's reagent and a ‘tryptophan reaction’. Journal of Pharmacological Methods, 1982. 8(1): p. 19-31.
64. Nash, T., The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J, 1953. 55(3): p. 416-21.
65. Sasirekha, N., S. Basha, and K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 2006. 62(1-2): p. 169-180.
66. Moulder, J.F. and R.C. King, Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics, 1995.
67. Jing, L., et al., Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J Phys Chem B, 2006. 110(36): p. 17860-5.
68. Pan, P.-W. and Y.-W. Chen, Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 2007. 8(10): p. 1546-1549.
69. Lee, W.-H., et al., A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis. Applied Catalysis B: Environmental, 2013. 132-133: p. 445-451.
70. Guan, G., T. Kida, and A. Yoshida, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Applied Catalysis B: Environmental, 2003. 41(4): p. 387-396.
71. Zhang, Q., et al., Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Applied Catalysis A: General, 2011. 400(1-2): p. 195-202.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60256-
dc.description.abstract由於人類經濟活動不斷的發展並且無節制地排放二氧化碳,導致大氣中的二氧化碳濃度持續增加、溫室效應增強造成全球暖化。二氧化碳回收再利用不僅可以解決全球暖化的危機,還可以帶來可觀的經濟價值。
本研究主要分為兩部分: (1) 合成可見光光觸媒 GaN:ZnO與觸媒分析 (2) 測試GaN:ZnO 光催化能力。以固態熔融法在氨氣的環境下鍛燒氧化鎵與氧化鋅至1123K能夠合成出可見光光觸媒GaN:ZnO,由UV-Vis圖得知該觸媒可以吸收的波段達到可見光的範圍,能隙為2.6eV,由EDS與XRD圖的結果可以判斷是否成功合成出GaN:ZnO,最後再由TEM與XPS來確認附載共觸媒與其價態。
經過光觸媒反應發現共觸媒附載GaN:ZnO具有兩種能力: (1) 還原二氧化碳 (2)產氫。具有雙種功能的觸媒可大幅度提升光觸媒反應的光亮子效率。本實驗除了製備雙功觸媒之外,額外的還發現了一個有趣的現象,還原二氧化碳與產氫具有相輔相成的功能。
當以GaN:ZnO產氫時,可以利用所產生的氫氣進行二氧化碳氫化反應來製造碳氫化合物,而氫化反應的吉布士自由能為負值,其所代表的意義是該反應為自發性反應,能使反應較容易進行。此外反應中被氫化的二氧化碳所產生的甲醇,其扮演的腳色為犧牲試劑並捕捉電子以進行光催化反應。因此,由氫化二氧化碳與甲醇當犧牲試劑所產生的循環可以提升光催化反應的效率,而其效率值超越現有可見光光觸媒所能達到的效率,在可見光的照射下,氫氣、甲烷、甲醇、甲醛的產率分別為 3.16, 1.12, 2.24, 0.312, μmol/h/g,此外一氧化碳也是其中的產物,而光電子效率為 0.0245%。
zh_TW
dc.description.abstractGlobal warming has become a major environmental issue to be considered in the 21th century. One possible solution of global warming is the reduction of carbon dioxide. The reduction of carbon dioxide could not only solve the crisis of global warming, but provide a high economic value. Carbon dioxide could be reduced to useful chemicals such as methane, methanol, and other hydrocarbons.
In this research, co-catalyst loaded GaN:ZnO is found to have the ability to perform both photocatalytic reduction of carbon dioxide and produce hydrogen (water splitting) simultaneously. Having the duel functions ability gives the advantages of increasing the conversion of solar energy. An interesting phenomena found while performing photocatalytic reaction of duel function catalyst is that providing the ability of water splitting, carbon dioxide reduction ability is enhanced through the hydrogenation of CO2 [1] through the produced hydrogen. For the reaction in the hydrogenation of carbon dioxide to produce hydrocarbons, the change of Gibbs energy becomes a negative value meaning that the reaction is favorable and is spontaneous. Furthermore, the as produced methanol acted as an electron trap for the enhancement of hydrogen production [2]. Therefore the efficiency of the photocatalyst introduced in this research is higher than recent developed visible light catalyst. The result of Ni/NiO-GaN:ZnO showed a yield of 3.16, 1.12, 2.24, 0.312 μmol/h/g of hydrogen, methane, methanol, formaldehyde respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:14:21Z (GMT). No. of bitstreams: 1
ntu-102-R00524094-1.pdf: 5449921 bytes, checksum: fc97f27909b5d2ffecaee4c080051583 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgement I
Abstract (Chinese) III
Abstract V
Table of Contents VII
List of Figures XII
1. Introduction 1
1.1 Background 2
1.2 Research Motivations 3
1.3 Research Goals 4
2. Literature Review 4
2.1 Background of photocatalysis 4
2.2 Introduction of GaN:ZnO 7
2.2.1 Structure and Characteristics 10
2.2.2 Co-catalyst loading 13
2.2.3 Water splitting ability 14
2.3 Background of Carbon Dioxide 19
2.3.1 Chemical and physical properties 19
2.3.2 Reduction of Carbon Dioxide through photocatalytic reaction 21
2.3.3 Hydrogenation of Carbon Dioxide 26
3. Experimental Method 33
3.1 Materials and Apparatus 33
3.1.1 Chemicals 33
3.1.2 Apparatus 35
3.2 Preparation of Photocatalysts 36
3.2.1 GaN:ZnO Photocatalyst preparation Setup 36
3.2.2 Solid State Fusion Method 42
3.2.3 Loading co-catalyst 43
3.2.3.1 Co-catalyst loading Setup 43
3.2.3.2 Incipient wetness impregnation method 46
3.3 Photocatalyst Characterization 49
3.3.1 X-Ray Diffraction (XRD) 49
3.3.2 UV – Visible Spectrum (UV-VIS)2 51
3.3.3 Energy Dispersive Spectrometer (EDS)2 53
3.3.4 X-Ray Photoelectron Spectrometer (XPS)2 55
3.3.5 Field Emission Scanning Electron Microscopy (SEM)2 56
3.3.6 Transmission electron microscopy (TEM) 57
3.3.7 Photoluminescence (PL) 58
3.3.8 Gas Chromatography Instrument (GC-FID, GC-TCD) 59
3.4 Analysis of Formaldehyde 61
3.4.1 Calibration Curve 63
3.4.2 Formaldehyde Calibration 63
3.5 Photocatalytic Reaction 65
3.5.1 Gas Chromatography Detection Conditions 65
3.5.1.1 FID detector 65
3.5.2 Reaction System 73
3.5.2.1 Slurry batch reactor 74
3.5.2.2 Light sources 76
3.5.2.3 Reduction of carbon dioxide and hydrogen production 76
3.5.3 Calibration Curve 78
3.5.3.1 Hydrogen Calibration 78
3.5.3.2 Methane Calibration 80
3.5.3.3 Carbon Monoxide Calibration 81
3.5.3.4 Methanol Calibration 83
4. Results and Discussion 84
4.1 Catalyst characterization and Analysis 84
4.1.1 X-Ray Diffraction (XRD) 84
4.1.2 UV – Visible Spectrum (UV-VIS) 86
4.1.3 Field Emission Scanning Electron Microscopy (SEM) 88
4.1.4 Energy Dispersive Spectrometer (EDS) 89
4.1.5 X-Ray Photoelectron Spectrometer (XPS) 92
4.1.6 Transmission electron microscopy (TEM) 93
4.1.7 Photoluminescence (PL) 95
4.2 Catalyst preparation with different precursors 97
4.3 Photocatalytic reduction of Carbon Dioxide 99
4.3.1 Blank Experiment 100
4.3.2 Results over different conditions: Addition of H2, NaOH, NaCl 101
4.3.3 Photocatalytic reaction over several metal/metal oxide loadings .103
4.3.3.1 Photocatalytic reaction over Ni/NiO / GaN:ZnO 103
4.3.3.2 Photocatalytic reaction over low activity co-catalyst 110
4.4 Quantum Efficiency 110
4.5 Comparison with current references 116
5. Twin Reactor 118
5.1 Experimental conditions 118
5.2 Experimental Result 120
6. Conclusions and Future Advices 123
6.1 Conclusions 123
6.2 Future Advices 124
References 126
Appendices 132
Autobiography 136
dc.language.isozh-TW
dc.subject氫化二氧化碳zh_TW
dc.subject單反應器zh_TW
dc.subject可見光光觸媒zh_TW
dc.subjectGaN:ZnOzh_TW
dc.subject產氫zh_TW
dc.subjectVisible lighten
dc.subjectPhotocatalysten
dc.subjectCO2 reductionen
dc.subjectWater splittingen
dc.subjectGaN:ZnOen
dc.title可見光雙功觸媒氫化二氧化碳與產氫反應zh_TW
dc.titleDuel function visible light photocatalyst in hydrogenation of carbon dioxide via hydrogen production.en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林欣瑜,萬本如
dc.subject.keyword可見光光觸媒,氫化二氧化碳,產氫,GaN:ZnO,單反應器,zh_TW
dc.subject.keywordVisible light,GaN:ZnO,Photocatalyst,Water splitting,CO2 reduction,en
dc.relation.page136
dc.rights.note有償授權
dc.date.accepted2013-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
5.32 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved