請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60233
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李達源(Dar-Yuan Lee) | |
dc.contributor.author | Pei-Yu Jiang | en |
dc.contributor.author | 江珮瑜 | zh_TW |
dc.date.accessioned | 2021-06-16T10:14:00Z | - |
dc.date.available | 2016-08-26 | |
dc.date.copyright | 2013-08-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-19 | |
dc.identifier.citation | 戶刈義次。1963。作物學試驗法。東京農業技術學會印行。pp. 159–176.
謝易錚。2011。不同水稻品種根部鐵膜生成之差異及其對水稻吸收砷之影響。國立臺灣大學農業化學研究所碩士論文。 蘇宏仁。2009。台灣地區砷之物質流分析。國立臺灣大學環境工程研究所碩士論文。 江珮瑜。2011。評估種植於砷汙染關渡平原土壤之水稻根部表面鐵膜對水稻吸收砷的影響。行政院國家科學委員會補助大專學生參與專題研究計畫研究成果報告。 Abendin, M.J., J. Feldmann, and A.A. Meharg. 2002. Uptake kinetics of arsenic species in rice plants. Plant Physiol. 128:1120–1128. Batty, L.C., A.J.M. Bake, B.D. Wheeler, and C.D. Curits. 2000. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. steudel. Ann. Bot. 86:647–653. Bienert, G.P., M.D. Schuessler, and T.P. Jahn. 2008. Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem. Sci. 33:20–26. Bode, K., O. Doring, S. Luthje, H.U. Neue, and M. Bottger. 1995. The role of active oxygen in iron tolerance of rice (Oryza sativa L.). Protoplasma 184:249–255. Brammer, H. and P. Ravenscroft. 2009. Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environ. Int. 35:647–654. Carey, A.M., G.J. Norton, C. Deacon, K.G. Scheckel, E. Lombi, T. Punshon, M.L. Guerinot, A. Lanzirotti, M. Newville, Y. Choi, A.H. Price, and A.A. Meharg. 2011. Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol. 192:87–98. Chabbi, A. 1999. Juncus bulbosus as a pioneer species in acid lignite mining lakes: interactions, mechanism and survival strategies. New Phytol. 144:133–142. Chen, C.C., J.B. Dixon, and F.T. Turner. 1980. Iron coatings on rice roots: morphology and models of development. Soil Sci. Soc. Am. J. 44:1113–1119. Chen, R.F., R.F. Shen, P. Gu, X.Y. Dong, C.W. Du, and J.F. Ma. 2006. Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress. Ann. Bot. 98:389–395. Chen, S.L., S.R. Dzeng, M.H. Yang, K.H. Chiu, G.M. Shieh, and C.M. Wai. 1994. Arsenic species in groundwater of the Blackfoot disease, Taiwan. Environ. Sci. Technol. 28:877–881. Chen, Z., Y.G. Zhu, W.J. Liu, and A.A. Meharg. 2005. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 165:91–97. Colmer, T.D. 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26:17–36. Colmer, T.D., M.C.H. Cox, and L.A.C.J. Voesenek. 2006. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170:767–777. Csanady, M., and I. Straub. 1995. Health damage due to pollution in Hungary. In Proceedings of the Rome Symposium, September, 1994, IAHS Publs. No. 233, pp. 1–11. Cullen, W.R., and K.J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89:713–764. Deng, D., S.C. Wu, F.Y. Wu, H. Deng, and M.H. Wong. 2010. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environ. Pollut. 158:2589–2595. Dhankher, O.P., Y.J. Li, B.P. Rosen, J. Shi, D. Salt, J.F. Senecoff, N.A. Sashti, and R.B. Meagher. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20:1140–1145. Done, A.K., and A.J. Peart. 1971. Acute toxicities of arsenical herbicides. Clin. Toxical. 4:343–355. Drew, M.C., C.J. He, and P.W. Morgan. 2000. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5:123–127. Duan, G.L., Y. Zhou, Y.P. Tong, R. Mukhopadhyay, B.P. Rosen, and Y.G. Zhu. 2007. A CDC25 homologue from rice functions as an arsenate reductase. New Phytol. 174:311–321. Evan, D.E. 2003. Aerenchyma formatiom. New Phytol. 161:35–49. Fang, W.C., J.W., Wang, C.C. Lin, and C.H. Kao. 2001. Iron induction of lipid peroxidation and effects on antioxidative enzyme activities in rice leaves. Plant Growth Regul. 35:75–80. Farquhar, M.L., J.M.Charnock, F.R. Livens, and D.J. Vaughan. 2002. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 36:1757–1762. Ferguson, J.F., and J. Gavis. 1972. A review of the arsenic cycle in natural water. Water Res. 6:1259–1274. Garnier, J.M., F. Travassac, V. Lenoble, J. Rose, Y. Zheng, M.S. Hossain, S.H. Chowdhury, A.K. Biswas, K.M. Ahmed, Z. Cheng, and A. van Geen. 2010. Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater. Sci. Total Environ. 408:4185–4193. Goldberg, S., 2002. Competitive adsorption of arsenite and arsenate on oxides and clay minerals. Soil Sci. Soc. Am. J. 66:413–421. Green, M.S., and J.R. Etherington. 1977. Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance. J. Exp. Bot. 28:678–690. Hansel, C.M., M.J. La Force, S. Fendorf, and S. Sutton. 2002. Spatial and temporal association of As and Fe species on aquatic plant roots. Environ. Sci. Technol. 36:1988–1994. Hansel, C.M., S. Fendorf, S. Sutton, and M. Newville. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35:3863–2868. Heath, R.L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189–198. Holmquist, I. 1951. Occupational arsenical dermatitis, a study among employees at a copper ore smelting work including investigations of skin reactions to contact with arsenic compounds. Acta Derm. Venereol. Suppl. 31:1–214. Huang, J.H., G. Ilgen, and P. Fecher. 2010. Quantitative chemical extraction for arsenic speciation in rice grain. J. Anal. At. Spectrom. 25:800–802. Huang, J.H., K.N. Hu, and B. Decker. 2011. Organic arsenic in the soil environment: speciation, occurrence, transformation, and adsorption behavior. Water Air Soil Pollut. 219:401–415. Hughes, M. F., D.J. Thomas, and E.M. Kenyon. 2009. Toxicology and epidemiology of arsenic and its compounds. p. 237–276. In K.R. Henke et al. (eds) Environmental chemistry, health threats and waste treatment. John Wiley & Sons Ltd, West Sussex, UK. Isayenkov, S.V., and F.J. Maathuis. 2008. The Arabidopsis thaliana aquaglyceroporin AtNIP7:1 is a pathway for arsenite uptake. FEBS Lett. 582:1625–1628. Jain, A., K. P. Raven, and R. H. Loeppert. 1999. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH-release stoichiometry. Environ. Sci. Technol. 33:1179–1184. Jain, C.K., and I. Ali. 2000. Arsenic: occurrence, toxicity and speciation techniques. Water Res. 34:4304–4312. Jana, S., and M.A. Choudhuri. 1982. Glycolate metabolism of three submerged aquatic angiosperm during aging. Aqau. Bot. 12:345–354. Jean, J. S. et al. 2010. The Taiwan crisis: a showcase of the global arsenic problem. CRC Press, Taylor & Francis group. London, U.K. Jia, H., H. Ren, M. Gu, J. Zhao, S. Sun, X. Zhang, J. Chen, P. Wu, and G. Xu. 2011. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol. 156:1164–1175. Kamiya, T., M. Tanaka, N. Mitani, J.F. Ma, M. Maeshima, and T. Fujiwara. 2009. NIP1;1 an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J. Biol. Chem. 284:2114–2120. Kile, M.L., E.A. Houseman, C.V. Breton, T. Smith, Q. Quamruzzaman, M. Rahman, G. Mahiuddin, and D.C. Christiani. 2007. Dietary arsenic exposure in Bangladesh. Environ. Health Perspect. 115:889–893. Kiping, M.D. 1977. Arsenic, the Chemical Environment, Environment and Man, Vol. 6, eds J. Lenihan and W.W. Fletcher. pp. 93–110, Glasgow. Kixzka, M., J.G. Wiederhold, J. Frommer, A. Voegelin, S.M. Kraemer, B. Bourdon, and R. Kretzschmar. 2011. Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequence. Geochim. Cosmochim. Acta 75:5559–5573. Lee, C.H., Y.C. Hsieh, T.H. Lin, and D.Y. Lee. 2013. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil 363:231–241. Li, D.M., J.J. Tang, and Y.S. Li. 1991. The eco-physiological mechanism of rice tolerance to gleyic paddy soil and the breeding of varieties tolerance for soil-related stress. Rice Rev. Abstr. 10:1–4. Liu, W.J., Y.G. Zhu, F.A. Smith, and S.E. Smith. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J. Exp. Bot. 55:1707–1713. Liu, W.J., Y.G. Zhu, Y. Hu, P.N. Williams, A.G. Gault, A.A. Meharg, J.M. Charnock, and F.A. Smith. 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ. Sci. Technol. 40:5730–5736. Liu, X., S. Zhang, X. Shan, and Y.G. Zhu. 2005. Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301. Lombi, E., K.G. Scheckel., J. Pallon, A.M. Carey, Y.G. Zhu, and A.A. Meharg. 2009. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 193:665–672. Ma, J.F., N. Yamaji, N. Mitani, K. Tamai, S. Konishi, T. Fujiwara, M. Katsuhara, and M. Yano. 2007. An efflux transporter of silicon in rice. Nature 448:209–212. Ma, J.F., N. Yamaji, N. Mitani, X.Y. Xu, Y.H. Su, S.P. McGrath, and F.J. Zhao. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. U. S. A. 105:9931–9935. Meharg, A.A. and A. Raab. 2010. Getting to the bottom of arsenic standards and guidelines. Environ. Sci. Technol. 44:4395-4399. Meharg, A.A., and F.J Zhao. 2012. Arsenic & Rice. Springer. Dordrecht, Heidelberg, London, and New York. Meharg, A.A., E. Lombi, P.N. Williams, K.G. Scheckel, J. Feldmann, A. Raab, Y. Zhu, and R. Islam. 2008. Speciation and localization of arsenic in white and brown rice grains. Environ. Sci. Technol. 42:1051–1057. Meng, X.G., G.P. Korgiatis, and K.W. Bang. 2002. Combined effects of anions on arsenic removal by iron hydroxides. Toxicol. Lett. 133:103–111. Mir, K.A., A. Rutter, I. Koch, P. Smith, K.J. Reimer, and J.S. Poland. 2007. Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta 72:1507–1518. Mishra, S., A.B. Jha, and R.S. Dubey. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577. Mondal, D., and D.A. Polya. 2008. Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl. Geochem. 23:2987–2998. Moore, K.L., M. Schroder, Z.C. Wu, B.G.H. Martin, C.R. Hawes, S.P. McGrath, M.J. Hawkesford, J.F. Ma, F.J. Zhao, and C.R.M. Grovenor. 2011. High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. Plant Physiol. 156:913–924. Nagy, G., and I. Korom. 1983. Spale hautsymptome der arsenvergifturg aut grund der arsenendemic in Bugac–Alsomonostor. Z. Hautkr. 58:961–964. Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880. NAS (National Academy of Sciences) 1977. Medical and biological effects of environmental pollutants–arsenic. pp. 117–172, Washington, DC. Ohno, K., T. Yanaase, Y. Matsuo, T. Kimura, M.H. Rahman, Y. Magara, and Y. Matsui. 2007. Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci. Total Environ. 381:68–76. Ottow, J.C.G., G. Benckiser, and I. Watanabe. 1982. Iron toxicity of rice as multiple nutritional soil stress. Trop. Agric. Res. Series 15:167–179. Panaullah, G.M., T. Alam, M.B. Hossain, R.H. Loeppert, J.G. Lauren. C.A. Meisner, Z.U. Ahmed, and J.M. Duxbury. 2009. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31–39. Paoletti, F., D. Aldinucci, A. Mocali, and A. Capparini. 1986. A sensitive spectro- photometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154:536–541. Pereira, E.G., M.A. Oliva, L. Rosado-Souza, G.C. Mendes, D.S. Colares, C.H. Stopato, and A.M. Almeida. 2013. Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci. 201:81–92. Pershagen, G. 1983. The epidemiology of human arsenic exposure, ed. B. A. Fowler, pp. 199–211. Elsevier, Amsterdam. Petrick, J.S., F. Ayala-Fierro, W.R. Cullen, D.E. Carter, and H.V. Aposhian. 2000. Monomethylarsonous acid (MMA(III)) is more toxic than arsenic in chang human hepatocytes. Toxicol. Appl. Pharmacol. 163:203–207. Pickering, I.J., R.C. Prince, M.J. George, R.D. Smith, G.N. George, and D.E. Salt. 2000. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 122:1171–1177. Pinto, S.S., and C.M. Mcgill. 1953. Arsenic trioxide exposure in industry. Ind. Med. Surg. 22:281–287. Seyfferth, A.L., S.M. Webbs, J.C. Andrews, and S. Fendorf. 2011. Defining the distribution of arsenic species and plant nutrients in rice (Oryza sativa L.) from the root to the grain. Geochem. Cosmochim. Acta 75:6655–6671. Shri, M., S. Kumar, D. Chakrabarty, P.K. Trivedi, S. Mallick, P. Misram, D. Shukla, S. Mishra, S. Srivastava, R.D. Tripathi, and R. Tuli. 2009. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol. Environ. Saf. 72:1102–1110. Smedley, P.L., and D.G. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17:517–568. Stroud, J.L., G.J. Norton, M.R. Islam, T. Dasgupta, R.P. White, A.H. Price, A.A. Meharg, S.P. McGrath, and F.J. Zhao. 2011. The dynamics of arsenic in four paddy fields in the Bengal delta. Environ. Pollut. 159:947–953. Sun, G.X., P.N. Williams, A.M. Carey, Y.G. Zhu, C. Deacon, A. Raab, J. Feldmann, R.M. Islam, and A.A. Meharg. 2008. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ. Sci. Technol. 42:7542–7546. Sun, G.X., P.N. Williams, Y.G. Zhu, C. Deacon, A.M. Carey, A. Raab, J. Feldmann, and A.A. Meharg. 2009. Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ. Int. 35:473 – 475. Sunilda, T.F. 2009. Effects of rhizobacteria on iron uptake and root iron plaque formation in lowland rice under conditions of iron toxicity. Master of science of Rheinisch Friedrich-Wilhelms-Universitat zu Bonn. Syu, C.H., P.Y. Jiang, H.H. Huang, W.T. Chen, T.H. Lin, and D.Y. Lee. 2013. Arsenic sequestration in iron plaque and its effect in As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter. J. Soil Sci. Plant Nutr. DOI: 10.1080/00380768.2013.784950. Takahashi, Y., R. Minamikawa, K.H. Hattori, K. Kurishima, N. Kihou, and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 38:1038–1044. Vromman, D., S. Lutts, I. Lefevre, L. Somer, O. De Vreese, Z. Šlejkoves, and M. Quinet. 2013. Effects of simultaneous arsenic and iron toxicities on rice (Oryza sativa L.) development, yield-related parameters and As and Fe accumulation in relation to As speciation in the grains. Plant Soil DOI 10.1007/s11104-013-1676-2. WHO (World Health Organization) 1981. Environmental Health Criteria, 18: Arsenic. World Health Organization, Geneva. Williams, P.N., M. Lei, G. Sun, Q. Huang, Y. Lu, C. Deacon, A.A.Meharg, and Y.G. Zhu. 2009. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Human, China. Environ. Sci. Technol. 43:637–642. Woolson, E.A., J.H. Axley, and P.C. Kearney. 1971. The chemistry and phytotoxicity of arsenic in soils: I Contaminated field soils. Proc. Soil Sci. Soc. Am. 35:938–943. Wu, C., W.S. Shu, Y.G. Zhu, and M.H. Wong. 2011. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. J. Exp. Bot. 62:2889-2898. Wu, C., Z.H. Ye, H. Li, S.C. Wu, D. Deng, Y.G. Zhu, and M.H. Wong. 2012. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? J. Exp. Bot. 63:2961–2970. Wu, Z., H. Ren, S.P. McGrath, P. Wu, and F.J. Zhao. 2011. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol. 157:498–508. Xu, X.Y., S.P. McGrath, A.A. Meharg, and F.J. Zhao. 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 42:5574–5579. Xu, X.Y., S.P. McGrath, and F.J. Zhao. 2007. Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol. 176:590–599. Zhao, F.J., J.F. Ma, A.A. Meharg, and S.P. McGrath. 2009. Arsenic uptake and metabolism in plants. New Phytol. 181:777–794. Zhao, F.J., J.L. Stroud, M.A. Khan, and S.P. McGrath. 2012. Arsenic translocation in rice investigated using radioactive 73As tracer. Plant Soil 350:413–420. Zhao, F.J., S.P. McGrath, and A.A. Meharg. 2010. Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 61:535–559. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60233 | - |
dc.description.abstract | 本研究選用兩個不同鐵膜生成量之水稻品種,以水耕試驗探討鐵膜對As(III) 與As(V) 於水稻幼苗植體中物種及其累積之影響。先將水稻幼苗種植於額外添加 0 及 30 mg Fe(II) L-1 之木村氏B水耕液中三天,使台稉九號與台中在來一號根部表面生成紅棕色之鐵膜後以半強度木村氏B水耕液種植一天,接著將水稻換至含有0、0.5 及1 mg L-1 之As(III) 或 As(V) 養液中,種植14天後採收。採收後植體分為地上部與根部,分別測量株高、根長及鮮重,取部分根部樣品以dithionite-citrate-bicarbonate溶液溶解鐵膜,並分析剩餘根部及地上部樣品之砷、鐵、磷及砷物種濃度。結果顯示,Fe(II)、As(V) 及As(III) 皆會對水稻造成毒害,又以台稉九號對 Fe(II) 及As(III) 的耐受性較台中在來一號高。相較於As(III) 處理組,在As(V) 處理下,鐵膜可吸持較多含量之砷於根表面。由鐵膜上之砷/鐵莫耳比結果可知,不同水稻品種鐵膜對不同型態砷之吸持能力有差異(P < 0.05),即使台稉九號生成之鐵膜量顯著高於台中在來一號,台中在來一號生成之鐵膜在As(III) 或As(V) 處理下砷鐵之莫耳比值皆較台稉九號高,顯示其對砷之吸持能力較台稉九號強,推測可能為鐵膜生成之鐵(氫)氧化物型態不同所致。此外,在未添加 30 mg Fe(II) L-1 處理中,兩個水稻品種不論以As(III) 或As(V) 處理,植體地上部砷總量之 77-98 % 為As(III),因水稻具有砷酸還原酶,可將As(V) 還原成As(III)。在 30 mg Fe(II) L-1 處理下之所有砷處理水稻地上部As(V) 比例顯著增加,水稻受砷毒害效應減緩,推測因 Fe(II) 毒害造成水稻氧化壓力提高,使得As(V) 比例增加,且因As(V) 對水稻毒性較As(III) 低,因而減緩砷對水稻的毒害。 | zh_TW |
dc.description.abstract | In the present study, two contrast rice (Oryza sativa L.) cultivars, high iron plaque cultivar Taikeng 9 (TK9) and low iron plaque cultivar Taichung Native 1 (TCN1), with different capability of forming iron plaque were selected for hydroponic experiments to investigate the effect of iron plaque on As(III) and As(V) uptake and transformation in rice plants. Two-week-old rice seedlings were placed in Kimura B nutrient solutions with additional 30 mg L-1 Fe(II) as FeSO4.7H2O or without Fe(II) for 3 days to form iron plaque. After iron plaque formation, seedlings were transplanted in half-strength Kimura B nutrient solution overnight and then exposed to different As concentrations for 14 days. The treatments included: (1) control (2) 0.5 mg As(III) L-1 (3) 1.0 mg As(III) L-1 (4) 0.5 mg As(V) L-1 (5) 1.0 mg As(V) L-1. The results indicated that TK9 showed higher tolerance to As(III) and Fe(II) toxicity as compared to TCN1. More As adsorbed by iron plaque was observed by As(V) treatment in both genotypes. According to As/Fe molar ratio of iron plaque, TCN1 showed higher As sorption ability than TK9. It suggested that the species of iron oxyhydroxides may be an important factor on As sorption affinity. The main As species accumulated in rice shoots was As(III) (over 70%) regardless exposure to As(III) or As(V). In this study, iron plaque had no significant effect on short-term As uptake for TK9 and TCN1, except for TK9 treated with As(V). However, after Fe(II) treatment, the proportion of As(V) species in shoots for all As treatments and genotypes were significantly increased, and which could reduce the As toxicity to rice plants. It might result from that Fe(II) application could induce higher oxidative capacity of rice roots, which then caused As(III) to be oxidized As(V) and increasing proportion of As(V) in rice shoots. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:14:00Z (GMT). No. of bitstreams: 1 ntu-102-R00623003-1.pdf: 1898980 bytes, checksum: a23ad73908bf680451d4b7591fe86db9 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 表次 V 圖次 VI 第一章 緒論 1 1.1 砷的化學性質 1 1.1.1 有機砷 1 1.1.2 無機砷 1 1.2砷的來源 7 1.2.1 自然來源 7 1.2.2 人為來源 7 1.3砷的汙染 10 1.4 砷的生物毒性 11 1.5 水稻吸收與傳輸無機砷 12 1.6 砷對水稻生理、生化活性之影響 14 1.7 水稻根部表面的鐵膜 15 1.8 研究動機與目的 16 第二章 材料與方法 17 2.1 水稻幼苗生長試驗 17 2.1.1 育苗方法 17 2.1.2 誘導根部鐵膜生成試驗 20 2.1.3 不同砷物種暴露試驗 20 2.2 植體採收 21 2.2.1 水稻根部表面鐵膜萃取 21 2.2.2 水稻植體砷物種分析 24 2.2.3 水稻植體鐵、磷、及砷含量分析 26 2.3 統計分析 26 2.4 試藥配製 27 第三章 結果與討論 29 3.1 不同鐵、砷處理對水稻幼苗生長之影響 29 3.1.1 鐵處理對水稻幼苗生長之影響 29 3.1.2 砷處理對水稻幼苗生長之影響 30 3.2 不同鐵、砷處理中水稻幼苗植體內砷濃度之差異 38 3.2.1 不同鐵處理對水稻植體內砷濃度之影響 38 3.2.2 不同砷處理中水稻鐵膜及植體內砷濃度之差異 41 3.3 根部鐵膜中砷與鐵關係 44 3.3.1 砷處理對根部鐵膜中鐵濃度之影響 44 3.3.2 根部鐵膜中的砷鐵莫耳比值 46 3.4 Fe(II) 處理對As(III) 與As(V) 於水稻幼苗植體中砷物種及其累積之影響 48 3.4.1 Fe(II) 處理對As(III) 與As(V) 於水稻幼苗植體中砷累積之影響 48 3.4.2 Fe(II) 影響As(III) 與As(V) 於水稻幼苗植體中砷物種的比例 49 第四章 結論 54 第五章 參考文獻 55 附錄 67 | |
dc.language.iso | zh-TW | |
dc.title | 不同水稻品種鐵膜對三價砷與五價砷於水稻幼苗植體中累積及其物種之影響 | zh_TW |
dc.title | Formation of Iron Plaque on Different Genotypes of Paddy Rice and Its Effect on Arsenite and Arsenate Uptake and Speciation in Rice Plants | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鍾仁賜(Ren-Shih Chung),許正一(Zeng-Yei Hseu),洪傳揚(Chwan-Yang Hong),莊愷瑋(Kai-Wei Juang) | |
dc.subject.keyword | 砷物種,水稻,鐵膜,三價砷,五價砷, | zh_TW |
dc.subject.keyword | Arsenic speciation,paddy rice (Oryza sativa L.),iron plaque,As(III),As(V), | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 1.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。