Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60230
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平
dc.contributor.authorKuang-Yu Changen
dc.contributor.author張光佑zh_TW
dc.date.accessioned2021-06-16T10:13:57Z-
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citation[1] The FG-NET aging Database, available at http://www.fgnet.rsunit.
com/. 24
[2] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns:
Application to face recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(12):2037–2041, 2006. 8
[3] J. And’en and S. Mallat. Multiscale scattering for audio classification. In The
International Society for Music Information Retrieval, 2011. 21, 40
[4] M. S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan.
Recognizing facial expression: machine learning and application to spontaneous
behavior. In IEEE Conference on Computer Vision and Pattern Recognition, 2005.
23, 40
[5] M. S. Bartlett, J. R. Movellan, G. Littlewort, B. Braathen, M. G. Frank, and T. J.
Sejnowski. Towards automatic recognition of spontaneous facial actions. What the
Face Reveals, pages 393–426, 2005. 56
[6] J. Bruna and S. Mallat. Classification with scattering operators. In IEEE International
Conference on Computer Vision and Pattern Recognition, 2011. 8, 20, 21,
39, 40
[7] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(8):1872–1886, 2013. 20
[8] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.
Learning to rank using gradient descent. In International Conference on
Machine learning, 2005. 14
[9] D. Cai, X. He, J. Han, and H.-J. Zhang. Orthogonal laplacianfaces for face recognition.
IEEE Transactions on Image Processing, 15(11):3608–3614, 2006. 11
[10] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.
18, 26
[11] K. Y. Chang, T. L. Liu, and S. H. Lai. Learning partially-observed hidden conditional
random fields for facial expression recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, 2009. 36, 43
[12] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung. A ranking approach for human age estimation
based on face images. In International Conference on Pattern Recognition,
2010. 17, 25, 26, 27, 29
[13] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung. Ordinal hyperplanes ranker with cost
sensitivities for age estimation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2011. 42
[14] K.-Y. Chang, C.-F. Lin, C.-S. Chen, and Y.-P. Hung. Applying scattering operators
for face recognition: A comparative study. In International Conference on Pattern
Recognition, 2012.
[15] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung. Intensity rank estimation of facial expressions
based on a single image. In IEEE International Conference on Systems,
Man, and Cybernetics, 2013. 41
[16] W. Y. Chang, C.S. Chen, and Y. P. Hung. Analyzing facial expression by fusing
manifolds. In Asian Conference on Computer Vision, 2007. 4, 33, 34, 36, 43
[17] S. W. Chew, S. Lucey, P. J. Lucey, and S. Sridharan. Improved facial expression
recognition via uni-hyperplane classification. In IEEE International Conference on
Computer Vision and Pattern Recognition, 2012. 34, 35, 36
[18] W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. In
International Conference on Machine Learning, pages 145–152, 2005.
[19] W. Chu and S S. Keerthi. Support vector ordinal regression. Neural computation,
19(3):792–815, 2007. 42
[20] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.
7, 25
[21] D. Cossock and T. Zhang. Subset ranking using regression. In Learning theory,
2006. 14
[22] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2005.
[23] J. R. Delannoy and J. McDonald. Automatic estimation of the dynamics of facial
expression using a three-level model of intensity. In International Conference on
Automatic Face & Gesture Recognition, 2008. 33, 34, 35, 43, 56, 57
[24] A. Dhall and R. Goecke. Group expression intensity estimation in videos via gaussian
processes. In International Conference on Pattern Recognition, 2012. 4
[25] G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Sejnowski. Classifying
facial actions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(10):974–989, 1999. 23
[26] P. Ekman andW. V. Friesen. Unmasking the face: A guide to recognizing emotions
from facial clues. 1975. 33
[27] P. Ekman and W. V. Friesen. Facial action coding system: A technique for the
measurement of facial action. Manual for the Facial Action Coding System, 1978.
[28] E. Frank and M. Hall. A simple approach to ordinal classification. In European
Conference on Machine Learning, 2001.
[29] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences. Journal of Machine Learning Research, 4:933–969,
2003. 14, 37
[30] Y. Fu and T. S. Huang. Human age estimation with regression on discriminative
aging manifold. IEEE Transactions on Multimedia, 2008. 8, 9, 11, 17
[31] X. Geng and K. Smith-Miles. Facial age estimation by multilinear subspace analysis.
In IEEE International Conference on Acoustics, Speech, and Signal Processing,
2009. 10
[32] X. Geng, Z.-H. Zhou, Y. Zhang, G. Li, and H. Dai. Learning from facial aging
patterns for automatic age estimation. In ACM International Conference on Multimedia,
2006. 10
[33] X. Geng, Z. Zhou, and K. Smith-Miles. Automatic age estimation based on facial
aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2007. 9, 10, 17, 19, 25, 27
[34] G. Guo and G. Mu. Human age estimation: What is the influence across race
and gender? In IEEE International Conference on Computer Vision and Pattern
Recognition Workshops, 2010. 8, 9, 12
[35] G. Guo and G. Mu. A study of large-scale ethnicity estimation with gender and
age variations. In IEEE International Conference on Computer Vision and Pattern
Recognition Workshops, 2010. 12
[36] G. Guo and G. Mu. Simultaneous dimensionality reduction and human age estimation
via kernel partial least squares regression. In IEEE International Conference
on Computer Vision and Pattern Recognition, 2011. 11
[37] G. Guo and X. Wang. A study on human age estimation under facial expression
changes. In IEEE International Conference on Computer Vision and Pattern
Recognition, 2012. 12
[38] G. Guo, Y. Fu, C. Dyer, and T. S. Huang. Image-based human age estimation by
manifold learning and locally adjusted robust regression. IEEE Transactions on
Image Processing, 2008. 3, 9, 11, 13, 17, 25, 27
[39] G. Guo, Y. Fu, T. S. Huang, and C. R. Dyer. Locally adjusted robust regression
for human age estimation. In IEEE Workshop on Applications of Computer Vision,
2008. 8
[40] G. Guo, G. Mu, Y. Fu, C. Dyer, and T. S. Huang. A study on automatic age
estimation using a large database. In IEEE Internationl Conference on Computer
Vision, 2009. 12
[41] G. Guo, G. Mu, Y. Fu, and T. S. Huang. Human age estimation using bioinspired
features. In IEEE International Conference on Computer Vision and Pattern
Recognition, 2009. 3, 8, 9, 11, 13, 17, 21, 22
[42] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for
ordinal regression. In The Conference on Neural Information Processing Systems,
1999. 14, 42
[43] M. Kim and V. Pavlovic. Structured output ordinal regression for dynamic facial
emotion intensity prediction. In European Conference on Computer Vision, 2010.
4, 33, 34, 36
[44] S. Koelstra, M. Pantic, and I. Patras. A dynamic texture-based approach to recognition
of facial actions and their temporal models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(11):1940–1954, 2010. 33, 36
[45] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers
for face verification. In IEEE Conference on Computer Vision and Pattern
Recognition, 2009. 40
[46] Y. H. Kwon and N. Da Vitoria Lobo. Age classification from facial images. Computer
Vision and Image Understanding, 74(1):1–21, 1999. 7
[47] A. Lanitis, C. J. Taylor, and T. F. Cootes. Toward automatic simulation of aging
effects on face images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(4):442–455, 2002. 7, 10
[48] A. Lanitis, C. Draganova, and C. Christodoulou. Comparing different classifiers for
automatic age estimation. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 34(1):621–628, 2004. 7, 9, 17, 25, 56
[49] T. Leung and J. Malik. Representing and recognizing the visual appearance of materials
using three-dimensional textons. International Journal of Computer Vision,
43(1):29–44, 2001.
[50] C. Li, Q. Liu, J. Liu, and H. Lu. Learning ordinal discriminative features for age
estimation. In IEEE International Conference on Computer Vision and Pattern
Recognition, 2012. 11
[51] L. Li and H.-T. Lin. Ordinal regression by extended binary classification. In The
Conference on Neural Information Processing Systems, 2007. 14, 38, 42, 43
[52] P. Li, C. Burges, Q. Wu, J. C. Platt, D. Koller, Y. Singer, and S. Roweis. Mcrank:
Learning to rank using multiple classification and gradient boosting. In Advances
in Neural Information Processing Systems, 2007. 14
[53] C. T. Liao, H. J. Chuang, and S. H. Lai. Learning expression kernels for facial
expression intensity estimation. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2012. 34
[54] H.-T. Lin. From ordinal ranking to binary classification. PhD thesis, 2008. 18, 27
[55] D. G. Lowe. Object recognition from local scale-invariant features. In IEEE International
Conference on Computer Vision, 1999.
[56] J. Lu, X. Zhou, Y.-P. Tan, Y. Shang, and J. Zhou. Cost-sensitive semi-supervised
discriminant analysis for face recognition. IEEE Transactions on Information
Forensics and Security, 7(3):944–953, 2012. 45
[57] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. The extended
cohn-kanade dataset (ck+): A complete dataset for action unit and emotionspecified
expression. In IEEE International Conference on Computer Vision and
Pattern Recognition, 2010. 41, 50
[58] S. Mallat. Group invariant scattering. Communications in Pure and Applied Mathematics,
65(10):1331–1398, 2012. 8, 20, 39, 40
[59] A. Martinez and S. Du. A model of the perception of facial expressions of emotion
by humans: Research overview and perspectives. Journal of Machine Learning
Research, 13:1589–1608, 2012. 7
[60] B. Ni, Z. Song, and S. Yan. Web image mining towards universal age estimator. In
ACM International Conference on Multimedia, 2009. 9, 11
[61] T. Pfister, X. Li, G. Zhao, and M. Pietikainen. Recognising spontaneous facial
micro-expressions. In IEEE International Conference on Computer Vision, 2011.
36, 56
[62] T. Qin, X. D. Zhang, D. S. Wang, T. Y. Liu, W. Lai, and H. Li. Ranking with
multiple hyperplanes. In Special Interest Group on Information Retrieval, 2007.
14, 25, 27, 38, 42, 43
[63] N. Ramanathan and R. Chellappa. Modeling age progression in young faces.
In IEEE International Conference on Computer Vision and Pattern Recognition,
2006. 3, 7
[64] N. Ramanathan, R. Chellappa, and S. Biswas. Age progression in human faces: A
survey. Journal of Visual Languages and Computing, 2009. 13
[65] K. Ricanek, Y. Wang, C. Chen, and S. J. Simmons. Generalized multi-ethnic face
age-estimation. In IEEE Internationl Conference on Biometrics: Theory, Applications,
and Systems, 2009. 12
[66] K. Ricanek Jr. and T. Tesafaye. Morph: A longitudinal image database of normal
adult age-progression. In International Conference on Automatic Face & Gesture
Recognition, 2006. 24
[67] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.
Nature neuroscience, 2(11):1019–1025, 1999. 8, 11
[68] D. Ross, J. Lim, and M. H. Yang. Adaptive probabilistic visual tracking with
incremental subspace update. In European Conference on Computer Vision, 2004.
23
[69] S. T Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000. 11
[70] O. Rudovic, V. Pavlovic, and M. Pantic. Multi-output laplacian dynamic ordinal
regression for facial expression recognition and intensity estimation. In IEEE Conference
on Computer Vision and Pattern Recognition, 2012. 4, 33, 34, 36, 37, 50,
51, 54, 55
[71] J. A. Russell. A circumplex model of affect. Journal of personality and social
psychology, 39(6):1161, 1980. 35, 45
[72] J. A. Russell. Pancultural aspects of the human conceptual organization of emotions.
Journal of Personality and Social Psychology, 45(6):1281, 1983.
[73] L. Shang and K.-P. Chan. Nonparametric discriminant hmm and application to
facial expression recognition. In IEEE Internationl Conference on Computer Vision
and Pattern Recognition, 2009. 7
[74] A. Shashua and A. Levin. Ranking with large margin principle: Two approaches.
In The Conference on Neural Information Processing Systems, 2003. 14, 27, 42
[75] L. Shen and L. Bai. Information theory for gabor feature selection for face recognition.
EURASIP Journal on Applied Signal Processing, pages 1–11, 2006.
[76] L. Sifre and S. Mallat. Combined scattering for rotation invariant texture analysis.
In European Symposium on Artificial Neural Networks, 2012.
[77] J. Suo, X. Chen, S. Shan, andW. Gao. Learning long term face aging patterns from
partially dense aging databases. In IEEE International Conference on Computer
Vision, 2009. 11, 17
[78] J. T. Todd, L. S. Mark, R. E. Shaw, and J. B. Pittenger. The perception of human
growth. Scientific American, 242(2):132, 1980. 10
[79] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied to widebaseline
stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(5):815–830, 2010.
[80] H.-H. Tu and H.-T. Lin. One-sided support vector regression for multiclass costsensitive
classification. In International Conference on Machine Learning, 2010.
48
[81] K. Ueki, M. Sugiyama, and Y. Ihara. Perceived age estimation under lighting condition
change by covariate shift adaptation. In Internationl Conference on Pattern
Recognition, 2010. 17
[82] M. F. Valstar and M. Pantic. Fully automatic recognition of the temporal phases
of facial actions. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 42(1):28–43, 2012. 33, 36
[83] C. C.Wang, Y. C. Su, C. T. Hsu, C.W. Lin, and H. Y. Liao. Bayesian age estimation
on face images. In IEEE International Conference on Multimedia and Expo, 2009.
3, 9
[84] D.Watson and A. Tellegen. Toward a consensual structure of mood. Psychological
Bulletin, 98(2):219, 1985. xiv, 35, 44, 45, 46
[85] D. Watson, D. Wiese, J. Vaidya, and A. Tellegen. The two general activation systems
of affect: Structural findings, evolutionary considerations, and psychobiological
evidence. Journal of Personality and Social Psychology, 76(5):820–838, 1999.
35
[86] B. Xiao, X. Yang, Y. Xu, and H. Zha. Learning distance metric for regression
by semidefinite programming with application to human age estimation. In ACM
International Conference on Multimedia, 2009. 9
[87] B. Xiao, X. Yang, H. Zha, Y. Xu, and T. Huang. Metric learning for regression
problems and human age estimation. In Pacific-Rim Conference on Multimedia,
2009. 9, 13, 17
[88] B. Xu, Z. W. Shang, Y. Y. Tang, B. Fang, and T. P. Zhang. Occlusion robust face
recognition with scattering operator in gradient domain. International Journal of
Wavelets, Multiresolution and Information Processing, 2013. 40
[89] S. Yan, H. Wang, T. S. Huang, Q. Yang, and X. Tang. Ranking with uncertain
labels. In IEEE Internationl Conference on Multimedia and Expo, 2007. 25, 27
[90] S. Yan, H. Wang, X. Tang, and T. S. Huang. Learning auto-structured regressor
from uncertain nonnegative labels. In IEEE Internationl Conference on Computer
Vision, 2007. 25, 27
[91] P. Yang, Q. Liu, X. Cui, and D. N. Metaxas. Facial expression recognition based
on dynamic binary patterns. In IEEE Conference on Computer Vision and Pattern
Recognition, 2008. 34, 36, 43
[92] P. Yang, Q. Liu, and D. N. Metaxas. Rankboost with l1 regularization for facial
expression recognition and intensity estimation. In IEEE International Conference
on Computer Vision, 2009. 4, 33, 35, 36, 37, 43, 50, 51, 52, 54, 55
[93] P. Yang, Q. Liu, and D. N. Metaxas. Exploring facial expressions with compositional
features. In IEEE Conference on Computer Vision and Pattern Recognition,
2010. 34, 36
[94] P. Yang, L. Zhong, and D. N. Metaxas. Ranking model for facial age estimation.
In International Conference on Pattern Recognition, 2010. 25, 26, 27
[95] Z. Yang and H. Ai. Demographic classification with local binary patterns. In
Advances in Biometrics, 2007. 3, 9, 11
[96] Z. Zeng, J. Tu, B. M. Pianfetti, and T. S. Huang. Audio–visual affective expression
recognition through multistream fused hmm. IEEE Transactions on Multimedia,
10(4):570–577, 2008. 34
[97] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang. A survey of affect recognition
methods: Audio, visual, and spontaneous expressions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(1):39–58, 2009. 34
[98] Y. Zhang and D. Y. Yeung. Multi-task warped gaussian process for personalized
age estimation. In IEEE International Conference on Computer Vision and Pattern
Recognition, 2010. 3, 9, 10, 13, 17, 25, 27
[99] Y. Zhang and Z.-H. Zhou. Cost-sensitive face recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(10):1758–1769, 2010. 17, 45
[100] S. K. Zhou, B. Georgescu, X. S. Zhou, and D. Comaniciu. Image based regression
using boosting method. In IEEE Internationl Conference on Computer Vision,
2005. 8
[101] Z. Zhou and X. Liu. On multi-class cost-sensitive learning. In Association for the
Advancement of Artificial Intelligece,2006.
[102] Z.-H. Zhou and X.-Y. Liu. On multi-class cost-sensitive learning. Computational Intelligece,26(3):232-257,2010. 17
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60230-
dc.description.abstract如何讓電腦藉由觀察臉上的特徵來了解使用者的情緒與資訊是個基礎且重要的議題。在本論文中,我們針對人臉的年齡估計以及表情分析等題目進行研究與探討。在臉部年齡估計方面,與過去常見預測人臉影像年齡的方式不同,我們將年齡估計轉換為排序學習的問題,藉由成對式的比較將原本的年齡估計問題轉換為一連串的子問題,並且統整一連串子問題的結果來推論出人臉影像的真實年齡。我們提出了一個基於相對順序來估計人臉影像年齡的方法,藉由實驗結果的證明,顯示我們所提出的排序方法比一般常見的方法更準確。在臉部表情分析的研究上,過去的研究大多著重在表情類別辨識,在本論文中我們同時考慮了表情類別以及表情的強度,並且提出一個藉由單張人臉影像同時辨識表情類別以及估計表情強度的方法。過去的方法將不同表情之間的類別視為是互相獨立,我們的方法利用成本敏感學習同時考慮了不同表情類別之間的相對關係,以及相同表情類別下不同強度之間的關係。利用廣泛的實驗,我們證明所提出的方法與過去的方法相比不只可以達到最低的成本,同時有效的降低分類錯誤率。zh_TW
dc.description.abstractFace image understanding is important in computer vision and pattern recognition. In this dissertation, two important topics in face image understanding are studied, age estimation and facial expression analysis. To estimate human ages based on face images, we convey age estimation into a ranking problem. Instead of predicting a person's age directly, we infer the exact age of a face image based on a series of comparisons. Our approach is designed based on relative order, and experimental results show that our method performs better than conventional approaches. In facial expression analysis, we consider further the intensity of facial expression, and focus on both expression category identification and intensity level estimation. We present a facial expression recognition approach that can also infer the expression intensity rank based on a single image. Instead of regarding the labels of expressions as independent to each other, our approach takes the inter-label relationship into consideration, which can estimate both the facial expression and intensity under a cost-sensitive setting. Experimental results show that our method can provide minimal-cost results and low misclassification rates compared to existing approaches.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:13:57Z (GMT). No. of bitstreams: 1
ntu-102-D95922023-1.pdf: 2378859 bytes, checksum: 13eebbf9111585a84feb32baf21134f3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAbstract vii
List of Figures xiii
List of Tables xv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Ranking Approach for Age Estimation . . . . . . . . . . . . . . . 3
1.2.2 Cost-Sensitive Facial Expression-Intensity Estimation . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Ordinal Hyperplanes Ranker for Age Estimation 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Ordinal Hyperplanes Ranker . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Employing Relative Order Relationship Among Age Labels . . . 13
2.3.2 Cost-Sensitive Ordinal Hyperplanes Ranker . . . . . . . . . . . . 15
2.4 Scattering Transform for Facial Feature Extraction . . . . . . . . . . . . 20
2.4.1 Review of Scattering Transform Computation . . . . . . . . . . . 21
2.4.2 Facial Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Cost-Sensitive Facial Expression Analysis 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Ranking Levels for Facial Expression Intensity . . . . . . . . . . 34
3.1.2 Cost-Sensitive Learning for Facial Expressions . . . . . . . . . . 35
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Label Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Intensity Ranking Inference . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Facial Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Expression Intensity Ranking . . . . . . . . . . . . . . . . . . . 41
3.5 Expression Category Classification . . . . . . . . . . . . . . . . . . . . . 43
3.5.1 Cost Setting for Expression Categories . . . . . . . . . . . . . . 45
3.5.2 Expression Category Classification . . . . . . . . . . . . . . . . 48
3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4 Conclusion and Discussion 59
5 Future Work 61
Bibliography 63
dc.language.isoen
dc.subject散射變換zh_TW
dc.subject表情強度估計zh_TW
dc.subject表情分析zh_TW
dc.subject成本敏感zh_TW
dc.subject序列排序zh_TW
dc.subject年齡估計zh_TW
dc.subjectcost sensitivitiesen
dc.subjectscattering transformen
dc.subjectHuman age estimationen
dc.subjectexpression intensity estimationen
dc.subjectordinal rankingen
dc.subjectfacial expression analysisen
dc.title基於人臉影像之年齡與表情強度估計zh_TW
dc.titleAge and Expression-intensity Estimation Based on Facial Imagesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.coadvisor陳祝嵩
dc.contributor.oralexamcommittee黃春融,連震杰,李明穗,林惠勇,莊永裕
dc.subject.keyword年齡估計,序列排序,成本敏感,表情分析,表情強度估計,散射變換,zh_TW
dc.subject.keywordHuman age estimation,ordinal ranking,cost sensitivities,facial expression analysis,expression intensity estimation,scattering transform,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2013-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved