請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60204完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀(Pen-Hsiu Grace Chao) | |
| dc.contributor.author | Hsiao-Yun Tseng | en |
| dc.contributor.author | 曾筱芸 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:13:37Z | - |
| dc.date.available | 2016-09-02 | |
| dc.date.copyright | 2013-09-02 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | 1. Amiel, D., E. Billings, and F.L. Harwood, Collagenase Activity in Anterior Cruciate Ligament - Protective Role of the Synovial Sheath. Journal of Applied Physiology, 1990. 69(3): p. 902-906.
2. Hansen, K.A., J.A. Weiss, and J.K. Barton, Recruitment of tendon crimp with applied tensile strain. Journal of Biomechanical Engineering-Transactions of the Asme, 2002. 124(1): p. 72-77. 3. Barber, J.G., et al., Braided Nanofibrous Scaffold for Tendon and Ligament Tissue Engineering. Tissue Engineering Part A, 2013. 19(11-12): p. 1265-1274. 4. Baker, B.M., et al., The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 2008. 29(15): p. 2348-2358. 5. Franchi, M., et al., Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. Journal of Anatomy, 2010. 216(3): p. 301-309. 6. Franchi, M., et al., Contribution of Glycosaminoglycans to the Microstructural Integrity of Fibrillar and Fiber Crimps in Tendons and Ligaments. Thescientificworldjournal, 2010. 10: p. 1932-1940. 7. Murray, M.M., Current Status and Potential of Primary ACL Repair. Clinics in Sports Medicine, 2009. 28(1): p. 51-+. 8. Sodergard, A. and M. Stolt, Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science, 2002. 27(6): p. 1123-1163. 9. Heo, S.J., et al., Fiber Stretch and Reorientation Modulates Mesenchymal Stem Cell Morphology and Fibrous Gene Expression on Oriented Nanofibrous Microenvironments. Annals of Biomedical Engineering, 2011. 39(11): p. 2780-2790. 10. Lee, C.H., et al., Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005. 26(11): p. 1261-1270. 11. Li, F., et al., Cell shape regulates collagen type I expression in human tendon fibroblasts. Cell Motility and the Cytoskeleton, 2008. 65(4): p. 332-341. 12. Hiltner, A., J.J. Cassidy, and E. Baer, Mechanical-Properties of Biological Polymers. Annual Review of Materials Science, 1985. 15: p. 455-482. 13. Rezakhaniha, R., et al., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiology, 2012. 11(3-4): p. 461-473. 14. Ribeiro, C., et al., Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011. 12(1). 15. Ndong, F., et al., The development of iron-free partially stabilized cement for use as dental root-end filling material. International Endodontic Journal, 2012. 45(6): p. 557-564. 16. Kuo, Y.W. and J.L. Wang, Rheology of Intervertebral Disc An Ex Vivo Study on the Effect of Loading History, Loading Magnitude, Fatigue Loading, and Disc Degeneration. Spine, 2010. 35(16): p. E743-E752. 17. Rutledge, G.C. and S.V. Fridrikh, Formation of fibers by electrospinning. Advanced Drug Delivery Reviews, 2007. 59(14): p. 1384-1391. 18. Noh, H.K., et al., Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 2006. 27(21): p. 3934-3944. 19. Rwei, S.P., Y.T. Lin, and Y.Y. Su, Study of self-crimp polyester fibers. Polymer Engineering and Science, 2005. 45(6): p. 838-845. 20. Picciochi, R., et al., Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis. Colloid and Polymer Science, 2007. 285(5): p. 575-580. 21. Wasanasuk, K. and K. Tashiro, Structural Regularization in the Crystallization Process from the Glass or Melt of Poly(L-lactic Acid) Viewed from the Temperature-Dependent and Time-Resolved Measurements of FTIR and Wide-Angle/Small-Angle X-ray Scatterings. Macromolecules, 2011. 44(24): p. 9650-9660. 22. Gualandi, C., et al., Ethanol disinfection affects physical properties and cell response of electrospun poly(L-lactic acid) scaffolds. European Polymer Journal, 2012. 48(12): p. 2008-2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60204 | - |
| dc.description.abstract | 生物體內韌帶由平行排列的波浪狀纖維膠原蛋白所組成,這種波浪狀結構對韌帶的機械功能有所貢獻,例如提供關節的良好活動性。根據本實驗室先前的研究發現波浪狀電紡絲會增進韌帶細胞的表現。我們的實驗主要是探討電紡絲的捲曲度與其機械性質的關聯性,與他們對細胞的基因表現和細胞外間質的分泌量的影響。我們製造出犧牲性纖維來增進電紡絲的孔隙度,並且加熱使其捲曲。從我們的結果發現電紡絲的捲曲度會對細胞的型態與基因表現有所影響。在捲曲度最高的組別,膠原蛋白的基因表現有明顯的提升,而在長期細胞培養中,也是生產最多的黏多醣(GAGs)。很有趣的是,一開始在捲曲度最高的組別和純PLLA電紡絲的組別在toe region 的應變上沒有明顯差異,但是經過細胞長期培養之後有明顯提升。這些結果證明捲曲的電紡絲會增進人工韌帶的功能性。 | zh_TW |
| dc.description.abstract | The native ligament is composed of neatly arrange wavy fibrous collagen, which is believed to contribute to ligament’s mechanical function to support joint movement. We previously generated electrospun PLLA fibers with wavy structures that improved ligament fibroblast behaviors. The aim of this study is to investigate the correlation between the degree of waviness and mechanical properties, and their influence on cell phenotype and ECM production. We fabricated PLLA/PEO fiber mats to control porosity and waviness with heat treatment. Our results show that cell morphology and the phenotype would be affected by the degree of waviness. Collagen type I and type III gene expression in the waviest group, were significantly increased. Furthermore at long term study, the cells produce more GAGs in the waviest group as well. Interesting, the initial toe region of the waviest group has no difference compared with PLLA alone group, but after long term cell culture the toe region strain of the waviest group significantly increased. In summary, wavier fiber improves the functionality of the engineered ligament. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:13:37Z (GMT). No. of bitstreams: 1 ntu-102-R00548011-1.pdf: 7742646 bytes, checksum: 50f59d0560d9c087fcd539f9bd7e5cc0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract ii Contents iii List of Figures v List of Tables v Chapter 1 Introduction 1 1.1 Purpose of Research 1 1.2 Ligament tissue engineering 2 1.3 Electrospinning 3 1.4 Cell Shape and Orientation Effects Cell Phenotype 4 1.5 Nonlinear Mechanics of Ligament 4 Chapter 2 Material and Method 6 2.1 Scaffold Preparation 6 2.2 Characterization of Electrospun Fiber 7 2.3 Polymer Characterization 7 2.4 Mechanical Testing 8 2.5 Cell Culture 8 2.6 Cell Seeding and Cell Infiltration 9 2.7 RNA Extraction 9 2.8 Quantification of mRNA Levels 10 2.9 Long Term Cell Culture 11 2.10 DNA Quantification 11 2.11 Collagen Quantification 11 2.12 GAGs Quantification 12 2.13 Cell Morphology 13 2.14 Statistical Analysis 13 Chapter 3 Results 14 3.1 Fiber Analysis 14 3.2 Mechanical Properties 15 3.3 Cell Infiltration and Cell Morphology 15 3.4 Substrate Effects Cell Gene Expression 16 3.5 Long term culture effect 16 Chapter 4 Discussion 18 Reference 38 | |
| dc.language.iso | en | |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 韌帶細胞 | zh_TW |
| dc.subject | 捲曲度 | zh_TW |
| dc.subject | 犧牲性纖維 | zh_TW |
| dc.subject | toe region | zh_TW |
| dc.subject | 組織工程 | zh_TW |
| dc.subject | tissue engineering | en |
| dc.subject | toe region | en |
| dc.subject | ligament fibroblast | en |
| dc.subject | electrospinning | en |
| dc.subject | crimpness | en |
| dc.title | 犧牲性纖維增進電紡絲的捲曲性與人工韌帶的功能性 | zh_TW |
| dc.title | Sacrificial Fibers Improve Electrospun Fiber Crimp and Enhance Functionality of Engineered Ligament | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡偉博,趙玲 | |
| dc.subject.keyword | 靜電紡絲,組織工程,捲曲度,犧牲性纖維,韌帶細胞,toe region, | zh_TW |
| dc.subject.keyword | electrospinning,tissue engineering,crimpness,ligament fibroblast,toe region, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
